This paper reports about the fabrication and experimental test of an interferometric light intensity modulator integrated in a low loss (0.7 dB/cm), amorphous silicon based waveguide. It measures approximately 1 mm in length, while its cross section is 30-μm-wide and 3-μm-high. The device, which exploits the strong thermo-optic effect in thin film a-Si for its operation, is designed for application at the infrared wavelengths of 1.3 and 1.55 μm. The measured maximum operating on-off switching frequency of the device is 600 kHz. The very simple fabrication technology involves maximum process temperatures of 230 °C, and is therefore compatible with the standard microelectronic technology. This offers a new opportunity for the integration of optical and electronic functions on the same substrate.

Amorphous Silicon Based Waveguides And Light Modulators For Silicon Low-Cost Photonic Integrated Circuits

DELLA CORTE, Francesco Giuseppe
1998

Abstract

This paper reports about the fabrication and experimental test of an interferometric light intensity modulator integrated in a low loss (0.7 dB/cm), amorphous silicon based waveguide. It measures approximately 1 mm in length, while its cross section is 30-μm-wide and 3-μm-high. The device, which exploits the strong thermo-optic effect in thin film a-Si for its operation, is designed for application at the infrared wavelengths of 1.3 and 1.55 μm. The measured maximum operating on-off switching frequency of the device is 600 kHz. The very simple fabrication technology involves maximum process temperatures of 230 °C, and is therefore compatible with the standard microelectronic technology. This offers a new opportunity for the integration of optical and electronic functions on the same substrate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/18052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact