The REWEC3 (Resonant Wave Energy Converter) is a fixed oscillating water column (OWC) wave energy converter (WEC) incorporated in upright breakwaters. The device is composed by a chamber containing a water column in its lower part and an air pocket in its upper part. The air pocket is connected to the atmosphere via a duct hosting a self-rectifying air turbine. In addition, a REWEC3 includes a vertical U-shaped duct for connecting the water column to the open sea (for this reason it is known also as U-OWC). The working principle of the system is quite simple: by the action of the incident waves, the water inside the U-shaped duct is subject to a reciprocating motion, which induces alternately a compression and an expansion of the air pocket. The pressure difference between the air pocket and the atmosphere is used to drive an air turbine coupled to an off-the-shelf electrical generator connected to the grid. The main feature of the REWEC3 is the possibility of tuning the natural period of the water column in order to match a desired wave period through the size of the U-duct. The REWEC3 technology has been theoretically developed by Boccotti, later tested at the natural basin of the Natural Ocean Engineering Laboratory (NOEL, Italy), and finally proved at full scale with REWEC3 prototype built in the Port of Civitavecchia (Rome, Italy). The objective of this paper is to select and optimize a turbine/generator set of a U-shaped OWC installed in breakwaters located in the Mediterranean Sea, such as the Port of Civitavecchia, where the first prototype of REWEC3 has been realized, or the Port of Salerno or Marina delle Grazie of Roccella (Italy). The computations were performed using a time domain model based on the unsteady Bernoulli equation. Based on the time-domain model of the power plant, the following data is computed for the turbines: i) the ideal turbine diameter; ii) the generator feedback control law aiming to maximize the turbine power output for turbine coupled to the REWEC3 device for Mediterranean applications.
Power Take-Off Selection for a U-Shaped OWC Wave Energy Converter / Romolo, A; Henriques, J C C; Gato, L; Malara, G; Laface, V; Gomes, R P F; Portillo, J C C; Falcão, A F O; Arena, F. - 10:(2019). (Intervento presentato al convegno ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering tenutosi a Glasgow, Scotland, UK nel June 9–14, 2019) [10.1115/OMAE2019-96368].
Power Take-Off Selection for a U-Shaped OWC Wave Energy Converter
Romolo A
;Malara G;Laface V;Arena F
2019-01-01
Abstract
The REWEC3 (Resonant Wave Energy Converter) is a fixed oscillating water column (OWC) wave energy converter (WEC) incorporated in upright breakwaters. The device is composed by a chamber containing a water column in its lower part and an air pocket in its upper part. The air pocket is connected to the atmosphere via a duct hosting a self-rectifying air turbine. In addition, a REWEC3 includes a vertical U-shaped duct for connecting the water column to the open sea (for this reason it is known also as U-OWC). The working principle of the system is quite simple: by the action of the incident waves, the water inside the U-shaped duct is subject to a reciprocating motion, which induces alternately a compression and an expansion of the air pocket. The pressure difference between the air pocket and the atmosphere is used to drive an air turbine coupled to an off-the-shelf electrical generator connected to the grid. The main feature of the REWEC3 is the possibility of tuning the natural period of the water column in order to match a desired wave period through the size of the U-duct. The REWEC3 technology has been theoretically developed by Boccotti, later tested at the natural basin of the Natural Ocean Engineering Laboratory (NOEL, Italy), and finally proved at full scale with REWEC3 prototype built in the Port of Civitavecchia (Rome, Italy). The objective of this paper is to select and optimize a turbine/generator set of a U-shaped OWC installed in breakwaters located in the Mediterranean Sea, such as the Port of Civitavecchia, where the first prototype of REWEC3 has been realized, or the Port of Salerno or Marina delle Grazie of Roccella (Italy). The computations were performed using a time domain model based on the unsteady Bernoulli equation. Based on the time-domain model of the power plant, the following data is computed for the turbines: i) the ideal turbine diameter; ii) the generator feedback control law aiming to maximize the turbine power output for turbine coupled to the REWEC3 device for Mediterranean applications.File | Dimensione | Formato | |
---|---|---|---|
Romolo_2019_omae2019_power.pdf
non disponibili
Descrizione: Versione Editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.