Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.
Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain) / Cano, E; Cano-Ortiz, A; Musarella, Cm; Piñar Fuentes, Jc; Ighbareyeh, Jmh; Leyva Gea, F; del Río, S. - (2019), pp. 33-69. [https://doi.org/10.1007/978-981-13-6830-1_2]
Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain)
Musarella CM;
2019-01-01
Abstract
Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.