Seismic stability of earth dams is an issue of great concern in earthquake-prone regions. In fact, possible damages to the earth embankment may affect the serviceability of the dam and may culminate in a gross failure producing water overtopping and the flooding of the areas downstream of the dam. Most Italian dams were built without a proper awareness of seismic effects at a time when the knowledge of actual seismicity was rather limited. This thesis shows the results of a study of the seismic behavior of a zoned earth dam, namely the San Pietro dam, located in Avellino (Italy) to evaluate the evolution of the stress and strain state of the dam and of the foundation soils at service conditions and during a seismic excitation. The problem was studied with different levels of accuracy using different methods of analysis with the aim to obtain a better understanding of the seismic response of the dam and to assess its stability. After a preliminary analysis, aimed to reproduce the total and the effective static state of stress in the dam embankment and in the foundation soils, sets of pseudostatic, displacement-based and dynamic, even fully coupled, plane strain numerical analyses were carried out. Pseudostatic analyses were performed to individuate potential failure mechanism in the dam shells, as well as to evaluate the critical acceleration to be used when applying the sliding block displacement method of analysis. In order to carry out displacement and dynamic analyses a procedure for the selection of earthquake accelerograms from a seismic record database was developed. The procedure is based on the use of some indicators that quantify the correspondence between the elastic response spectrum of each of the selected accelerogram and a target response spectrum provided by the Italian code for the site at hand and for a given limit state. Following this procedure three sets of accelerograms, corresponding to three different limit state, were defined. Displacements were computed using both the well-known Newmark method and simplified methods based on empirical relationships relating the expected displacement to some parameters of the input accelerograms. To this purpose several empirical relationships available in the literature, some of which expressly referred to the Italian seismicity, were used. To predict the seismic performance of the dam 2D dynamic analyses were carried out using two different numerical codes, namely FLAC 2D and TOCHNOG, accounting for the non-linear soil response under cyclic loading assuming an elasto-plastic behavior or elasto-plastic strain hardening behavior of the soils of the dam. The geotechnical characterization of the foundation soils and of the dam is based on the results of recent investigations (Calabresi et al., 2004). Pseudo-static analyses were carried out with the computer code FLAC 2D and have allowed to assess the seismic stability of the upstream and downstream of the dam shells against potential slope failure mechanisms and the values of the critical acceleration then used in the displacement analyses. These simplified analyses, through the introduction of suitable shape factors, allowed assessing the horizontal and vertical components of the expected permanent displacements of the upstream and the downstream of the dam, providing maximum values of 50 cm and 20 cm respectively. The dynamic analyses performed using the computer code FLAC 2D led to distributions of shear strains which showed the onset of relatively shallow potential sliding surfaces localized in the dam shells and not affecting the core of the dam. Maximum values of permanent displacements were generally higher than those evaluated through the simplified displacement analyses due to possible effects of seismic motion amplification and excess pore pressure build-up, accounted for in the dynamic analyses and neglected in the simplified displacement analyses. In all the analyses displacements occur in the shallowest areas of the dam section and, generally, achieving larger values in the upstream shell of the dam, without affecting the dam clay core. The largest computed value of the vertical permanent displacement at the crest of the dam is about 25 cm which is much smaller than the dam service freeboard (1.5 m). The fully coupled dynamic analyses performed using the computer code TOCHNOG and modeling soil behavior through the constitutive model proposed by di Prisco (1993) provided larger permanent displacements in the downstream shell of the dam, smaller than those obtained in the FLAC 2D analyses. Again, the largest value of the vertical permanent displacement at the crest of the dam is much smaller than the service freeboard. Though significant excess pore pressures were predicted in the granular soils of the dam shells by both FLAC and TOCHNOG analyses, in no case the liquefaction condition was attained. The results obtained by means of the various methods of analysis used in this study seem to indicate that the level of deformation mobilized and the maximum permanent displacements and excess pore pressures expected in the dam under seismic excitation do not compromise the stability of the dam, do not trigger liquefaction in granular soils and do not affect the hydraulic serviceability of the dam. Finally, a comparison against literature results relative to observed damage levels as a function of recorded maximum seismic acceleration of the crest and measured vertical displacement of the crest of the dam allows concluding that the damage level expected for the dam is modest to moderate even under strong earthquakes.

La tesi descrive i risultati di uno studio del comportamento sismico di una diga in terra zonata situata in Italia (Campania - Avellino) mediante approcci di differente complessità. Lo studio è stato condotto con l’intento di valutare l’evoluzione dello stato tensionale e deformativo (della diga e dei terreni di fondazione con essa interagenti) durante le fasi di esercizio e in condizioni sismiche, individuare i possibili cinematismi che potrebbero influenzare la stabilità dell’opera e gli eventuali abbassamenti cumulati in corrispondenza del coronamento durante un evento sismico di riferimento (verificandone la compatibilità con il franco disponibile) e, infine, il possibile innesco di fenomeni di liquefazione dinamica nei terreni granulari interessati. Per la previsione della prestazione sismica della diga sono state condotte analisi preliminari per la definizione dello stato tensionale in condizioni statiche, analisi di tipo pseudo-statico (per l’individuazione di possibili cinematismi di collasso), analisi agli spostamenti (di tipo semplificato e non) utilizzando vari modelli previsionali disponibili in letteratura (alcuni dei quali esplicitamente riferiti alla sismicità italiana) e analisi dinamiche bidimensionali. Queste ultime sono state condotte in campo non lineare, nell’ipotesi di comportamento elasto-plastico del terreno, e accoppiate nell’ipotesi di comportamento elasto plastico incrudente dei terreni del corpo diga utilizzando un modello costitutivo avanzato (di Prisco 1993). La caratterizzazione geotecnica dei terreni di fondazione e del corpo diga è stata effettuata sulla base dei risultati di una recente campagna di indagini. Il moto sismico di riferimento per le analisi agli spostamenti e per le analisi dinamiche è stato definito in termini di storie temporali delle accelerazioni orizzontali. Per la selezione è stata utilizzata una procedura basata sull’uso di alcuni indicatori che quantificano la corrispondenza con un moto sismico di riferimento definito in accordo con i più recenti studi sulla pericolosità sismica di base del sito in cui ricade la diga e con le vigenti prescrizioni normative. Le analisi pseudo-statiche, eseguite con il codice di calcolo FLAC 2D, hanno permesso di individuare i possibili meccanismi di collasso del paramento di monte e di quello di valle (ottenendo valori del fattore di sicurezza pseudo statico comunque superiore all’unità) ed i corrispondenti valori delle accelerazioni critiche poi utilizzate nelle analisi agli spostamenti. Queste ultime hanno consentito di individuare range di variazione dello spostamento permanente molto ampi: escludendo alcuni casi limite, le componenti orizzontale e verticale degli spostamenti (ottenute mediante opportuni fattori di forma) del paramento di monte e di quello di valle sono risultate variabili negli intervalli 5-30 cm e 2-15 cm rispettivamente. I risultati delle analisi dinamiche in campo non lineare condotte con il codice di calcolo FLAC 2D hanno consentito di individuare distribuzioni delle deformazioni di taglio che evidenziano l’insorgenza di potenziali superfici di scorrimento che non interessano il nucleo della diga. I valori maggiori degli spostamenti permanenti attesi sono risultati generalmente superiori a quelli valutati con le analisi semplificate, soprattutto nei casi in cui si è tenuto conto dello sviluppo di sovrappressioni interstiziali che determinano riduzioni dello stato di sforzo efficace e, quindi, della resistenza al taglio. In tutti i casi le distribuzioni degli spostamenti permanenti mostrano che questi sono localizzati sempre in orrispondenza del paramento di monte con valori sempre inferiori a 75 cm anche per i moti sismici risultati più critici per la diga. Le componenti verticali degli spostamenti in cresta sono invece risultate pari al più a circa 25 cm e, se confrontate con il franco netto della diga (1.5 m), non dovrebbero comprometterne la tenuta idraulica. I risultati delle analisi accoppiate hanno, inoltre, mostrato che nei terreni granulari non si raggiunge una condizione di annullamento delle tensioni efficaci, anche se l’entità degli spostamenti che interessano i fianchi della diga lato monte indicano l’innesco di un meccanismo di collasso dovuto all’elevato livello di deformazione raggiunto. Nelle analisi dinamiche accoppiate eseguite utilizzando il modello costitutivo di di Prisco (1993) le distribuzioni degli spostamenti permanenti risultano invece localizzate prevalentemente lungo il paramento di valle, con valori comunque minori a quelli ottenuti con il codice di calcolo FLAC 2D. Gli spostamenti verticali massimi in cresta sono risultati molto piccoli, se confrontati con il franco netto della diga (1.5 m), mentre le massime sovrappressioni interstiziali sono risultate localizzate nei terreni granulari che costituiscono i fianchi, tuttavia, non sono stati tali da annullare le tensioni efficaci e compromettere la stabilità dell’opera. In definitiva, tutti i metodi di analisi utilizzati in questa sede, dai più semplificati ai più avanzati, sembrano indicare che il livello di deformazione mobilitato e gli spostamenti massimi attesi per la diga oggetto di studio sono tali da non comprometterne la stabilità globale, non indurre fenomeni di liquefazione nei terreni granulari e non compromettere la tenuta idraulica per effetto delle azioni sismiche considerate.

Valutazione delle condizioni di stabilità sismica di una diga in terra zonata / Aliberti, Domenico. - (2017 Jun 14).

Valutazione delle condizioni di stabilità sismica di una diga in terra zonata

ALIBERTI, Domenico
2017-06-14

Abstract

Seismic stability of earth dams is an issue of great concern in earthquake-prone regions. In fact, possible damages to the earth embankment may affect the serviceability of the dam and may culminate in a gross failure producing water overtopping and the flooding of the areas downstream of the dam. Most Italian dams were built without a proper awareness of seismic effects at a time when the knowledge of actual seismicity was rather limited. This thesis shows the results of a study of the seismic behavior of a zoned earth dam, namely the San Pietro dam, located in Avellino (Italy) to evaluate the evolution of the stress and strain state of the dam and of the foundation soils at service conditions and during a seismic excitation. The problem was studied with different levels of accuracy using different methods of analysis with the aim to obtain a better understanding of the seismic response of the dam and to assess its stability. After a preliminary analysis, aimed to reproduce the total and the effective static state of stress in the dam embankment and in the foundation soils, sets of pseudostatic, displacement-based and dynamic, even fully coupled, plane strain numerical analyses were carried out. Pseudostatic analyses were performed to individuate potential failure mechanism in the dam shells, as well as to evaluate the critical acceleration to be used when applying the sliding block displacement method of analysis. In order to carry out displacement and dynamic analyses a procedure for the selection of earthquake accelerograms from a seismic record database was developed. The procedure is based on the use of some indicators that quantify the correspondence between the elastic response spectrum of each of the selected accelerogram and a target response spectrum provided by the Italian code for the site at hand and for a given limit state. Following this procedure three sets of accelerograms, corresponding to three different limit state, were defined. Displacements were computed using both the well-known Newmark method and simplified methods based on empirical relationships relating the expected displacement to some parameters of the input accelerograms. To this purpose several empirical relationships available in the literature, some of which expressly referred to the Italian seismicity, were used. To predict the seismic performance of the dam 2D dynamic analyses were carried out using two different numerical codes, namely FLAC 2D and TOCHNOG, accounting for the non-linear soil response under cyclic loading assuming an elasto-plastic behavior or elasto-plastic strain hardening behavior of the soils of the dam. The geotechnical characterization of the foundation soils and of the dam is based on the results of recent investigations (Calabresi et al., 2004). Pseudo-static analyses were carried out with the computer code FLAC 2D and have allowed to assess the seismic stability of the upstream and downstream of the dam shells against potential slope failure mechanisms and the values of the critical acceleration then used in the displacement analyses. These simplified analyses, through the introduction of suitable shape factors, allowed assessing the horizontal and vertical components of the expected permanent displacements of the upstream and the downstream of the dam, providing maximum values of 50 cm and 20 cm respectively. The dynamic analyses performed using the computer code FLAC 2D led to distributions of shear strains which showed the onset of relatively shallow potential sliding surfaces localized in the dam shells and not affecting the core of the dam. Maximum values of permanent displacements were generally higher than those evaluated through the simplified displacement analyses due to possible effects of seismic motion amplification and excess pore pressure build-up, accounted for in the dynamic analyses and neglected in the simplified displacement analyses. In all the analyses displacements occur in the shallowest areas of the dam section and, generally, achieving larger values in the upstream shell of the dam, without affecting the dam clay core. The largest computed value of the vertical permanent displacement at the crest of the dam is about 25 cm which is much smaller than the dam service freeboard (1.5 m). The fully coupled dynamic analyses performed using the computer code TOCHNOG and modeling soil behavior through the constitutive model proposed by di Prisco (1993) provided larger permanent displacements in the downstream shell of the dam, smaller than those obtained in the FLAC 2D analyses. Again, the largest value of the vertical permanent displacement at the crest of the dam is much smaller than the service freeboard. Though significant excess pore pressures were predicted in the granular soils of the dam shells by both FLAC and TOCHNOG analyses, in no case the liquefaction condition was attained. The results obtained by means of the various methods of analysis used in this study seem to indicate that the level of deformation mobilized and the maximum permanent displacements and excess pore pressures expected in the dam under seismic excitation do not compromise the stability of the dam, do not trigger liquefaction in granular soils and do not affect the hydraulic serviceability of the dam. Finally, a comparison against literature results relative to observed damage levels as a function of recorded maximum seismic acceleration of the crest and measured vertical displacement of the crest of the dam allows concluding that the damage level expected for the dam is modest to moderate even under strong earthquakes.
14-giu-2017
Settore ICAR/07 - GEOTECNICA
ARENA, Felice
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
Aliberti Domenico.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 29.4 MB
Formato Adobe PDF
29.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/63419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact