: The problem of shaping the intensity distribution of an electromagnetic field is a canonical and fundamental problem of wave physics, which is relevant to many applications ranging from telecommunications, biomedical engineering and energy harvesting. In this framework, this thesis introduces novel paradigms for the filed intensity shaping and deals with their applications to the hyperthermia treatment planning. Hyperthermia is a cancer treatment modality in which the tumor temperature is elevated to a supra-physiologic temperature (40–44◦C) for 60-90min. Clinical trials have demonstrated the therapeutic benefit of this treatment in com- bination with radio- and chemo-therapy. According to the clinical findings, further increase of temperature would enhance the clinical effectiveness. In this respect, further progress and widespread clinical adoption of hyperthermia are dependent on the development of accurate treatment optimization approaches able sharply control the administered heating. Optimization of the heating pattern is nowadays tackled by optimally determining the complex excitation coefficients feeding a phased array applicator. In the thesis the problem of inducing a homogeneous temperature over a given target area while avoiding high temperatures in healthy tissues has been faced. In particular, different hyperthermia treatment planning optimization approaches have been proposed and clinically tested. For the first time, the multi- objective non-convex problem of maximizing the power deposition within a given target volume constraining it to prescribed level outside has been tackled by means of a convex optimization problem. The achieved clinical results suggested that the nowadays clinically adopted optimization approaches aren’t able to successfully deal with the locally advanced tumors (i.e., the larger target volumes). In other words, “just” focusing the power deposition distribution in a target point set into such a target volume was shown to be a sub-optimal solution for such challenging cases where a shaped distribution is needed. Hence, the novel paradigm of power deposition shaping (as opposed to power deposition focusing) has been herein introduced and novel shaping optimization approaches have been developed and tested
Il problema di sagomare la distribuzione dell'intensità di un campo elettromagnetico è un problema canonico e fondamentale della fisica delle onde rilevante in molte applicazioni che vanno dalle telecomunicazioni, ingegneria biomedica all’energy harvesting. In tale contesto, questa tesi introduce nuovi paradigmi per sagomare il modulo di un campo con particolare applicazione alla pianificazione dei trattamenti di ipertermia. L'ipertermia è una terapia oncologica in cui la temperatura della lesione tumorale è innalzata ad una temperatura sovra-fisiologica (40-44°C) per 60-90 minuti. Studi clinici hanno dimostrato il beneficio terapeutico di questo trattamento in combinazione con radioterapia e chemioterapia. Secondo i risultati clinici, incrementare ulteriormente la temperatura migliorerebbe l'efficacia clinica. Pertanto, una maggiore diffusione clinica di tale modalità terapeutica dipende dallo sviluppo di procedure per la pianificazione ottimale capaci di controllare accuratamente il trattamento somministrato. La pianificazione del trattamento viene, ad oggi, affrontata determinando in modo ottimale i coefficienti di eccitazione complessi che alimentano l’applicatore, i.e., un array fasato. In questa tesi, è stato affrontato il problema di generare una temperatura omogenea su una certa area target evitando temperature elevate nei tessuti sani circostanti. Nello specifico, diverse procedure di ottimizzazione sono state proposte e testate clinicamente. Per la prima volta, il problema, multi-obiettivo e non-convesso, di massimizzare la deposizione di potenza all'interno di un dato volume target vincolandola all'esterno è stato affrontato per mezzo di un problema di ottimizzazione convessa. I risultati clinici raggiunti hanno suggerito che gli approcci di ottimizzazione adottate attualmente in clinica non sono in grado di pianificare in modo ottimale il trattamento per zone tumorali caratterizzate dai volumi target più estesi. In altre parole, la “sola” focalizzazione in un punto target della distribuzione dell’energia depositata è sub-ottima per detti casi più complicati, in cui invece, si necessita di una distribuzione sagomata ad-hoc. Quindi, il nuovo paradigma di sagomare la distribuzione di potenza depositata (opposto a quello di focalizzare la potenza depositata) è stato proposto e nuovi approcci di ottimizzazione sono stati sviluppati e testati.
Novel paradigms in 3D field intensity shaping and their application to hyperthermia treatment planning / Bellizzi, Gennaro. - (2019 Apr 17).
Novel paradigms in 3D field intensity shaping and their application to hyperthermia treatment planning
BELLIZZI, Gennaro
2019-04-17
Abstract
: The problem of shaping the intensity distribution of an electromagnetic field is a canonical and fundamental problem of wave physics, which is relevant to many applications ranging from telecommunications, biomedical engineering and energy harvesting. In this framework, this thesis introduces novel paradigms for the filed intensity shaping and deals with their applications to the hyperthermia treatment planning. Hyperthermia is a cancer treatment modality in which the tumor temperature is elevated to a supra-physiologic temperature (40–44◦C) for 60-90min. Clinical trials have demonstrated the therapeutic benefit of this treatment in com- bination with radio- and chemo-therapy. According to the clinical findings, further increase of temperature would enhance the clinical effectiveness. In this respect, further progress and widespread clinical adoption of hyperthermia are dependent on the development of accurate treatment optimization approaches able sharply control the administered heating. Optimization of the heating pattern is nowadays tackled by optimally determining the complex excitation coefficients feeding a phased array applicator. In the thesis the problem of inducing a homogeneous temperature over a given target area while avoiding high temperatures in healthy tissues has been faced. In particular, different hyperthermia treatment planning optimization approaches have been proposed and clinically tested. For the first time, the multi- objective non-convex problem of maximizing the power deposition within a given target volume constraining it to prescribed level outside has been tackled by means of a convex optimization problem. The achieved clinical results suggested that the nowadays clinically adopted optimization approaches aren’t able to successfully deal with the locally advanced tumors (i.e., the larger target volumes). In other words, “just” focusing the power deposition distribution in a target point set into such a target volume was shown to be a sub-optimal solution for such challenging cases where a shaped distribution is needed. Hence, the novel paradigm of power deposition shaping (as opposed to power deposition focusing) has been herein introduced and novel shaping optimization approaches have been developed and testedFile | Dimensione | Formato | |
---|---|---|---|
Bellizzi Gennaro.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
11.53 MB
Formato
Adobe PDF
|
11.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.