Epileptic seizures seem to result from an abnormal synchronization of different areas of the brain, as if a kind of recruitment occurred from a critical area towards other areas of the brain, until the brain can no longer bear the extent of this recruitment and it triggers the seizure in order to reset this abnormal condition. In order to catch these recruitment phenomena, a technique based on entropy is introduced to study the synchronization of the electric activity of neuronal sources in the brain. This technique was tested over 25 EEG dataset from patients affected by absence seizures as well as on 40 EEG dataset from healthy subjects. The results show an abnormal coupling among the electrodes that will be involved in seizure development can be hypothesized before the seizure itself, in particular, the frontal/temporal area appears steadily associated to an underlying high synchrony in absence seizure patients.

Algorithms and topographic mapping for epileptic seizures recognition and prediction / Mammone, N.; Inuso, G.; Morabito, F. C.; Aguglia, U.; Cianci, V.; LA FORESTA, Fabio. - 204:(2009), pp. 261-270. (Intervento presentato al convegno WIRN 2009 tenutosi a Vietri S. M. (SA), Italy nel May 28-30) [10.3233/978-1-60750-072-8-261].

Algorithms and topographic mapping for epileptic seizures recognition and prediction

N. MAMMONE;F. C. MORABITO;LA FORESTA, Fabio
2009-01-01

Abstract

Epileptic seizures seem to result from an abnormal synchronization of different areas of the brain, as if a kind of recruitment occurred from a critical area towards other areas of the brain, until the brain can no longer bear the extent of this recruitment and it triggers the seizure in order to reset this abnormal condition. In order to catch these recruitment phenomena, a technique based on entropy is introduced to study the synchronization of the electric activity of neuronal sources in the brain. This technique was tested over 25 EEG dataset from patients affected by absence seizures as well as on 40 EEG dataset from healthy subjects. The results show an abnormal coupling among the electrodes that will be involved in seizure development can be hypothesized before the seizure itself, in particular, the frontal/temporal area appears steadily associated to an underlying high synchrony in absence seizure patients.
2009
978-1-60750-072-8
Brain mapping; EEG; Entropy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/8659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact