Internet of Things (IoT) is a profound technology evolution incorporating billions of devices (e.g., sensors, RFIDs, smartphones, and wearables) owned by different organizations and people who are deploying and using them for pervasive digital services. Their number, capabilities, scope of use and data volume keep growing and changing rapidly, leading to higher complexity in IoT applications. Thus, new distributed computing paradigms, such as Edge Computing (EC) or IoT-Cloud Computing, have been investigated to extend IoT resources into centralized data centres (e.g., clouds) or at the edge of IoT systems (e.g., edge micro datacenters). Among the most promising ones is Osmotic Computing (OC), motivated by the lack of a scalable, interoperable, configurable solution for delivering IoT applications in complex, heterogeneous and dynamic computing environments. OC looks at the opportunistic management of microservices (called MicroELements - MELs) to improve the Quality of Service (QoS) and networking management, interoperability, and efficiency of next-generation IoT applications. This thesis investigates how OC can be leveraged to achieve secure and dependable microservices orchestration in the Cloud-to-Thing (C2T) continuum where deployment and orchestration strategies depend on IoT applications’ specific requirements and physical/virtual resources availability. This contribution can be divided into four major parts. The first part overviews the C2T continuum in general and faces the resource management challenges. The second part details basic concepts, methodologies and key technologies behind OC and investigates how IoT applications into the C2T continuum can benefit from it. The third part showcases OsmoticToolkit, a cost-effective and flexible toolkit for OC ecosystems’ from-scratch design and real-world applications emulation. Finally, the fourth part gives a more in-depth look into the application deployment strategies and presents a Rule-Based MatchMaker (RBMM) for supporting applications deployment in the C2T continuum.

Internet of Things (IoT) è una radicale evoluzione tecnologica che incorpora miliardi di dispositivi (ad esempio, sensori, RFID, smartphone e dispositivi indossabili) che possono essere utilizzati da organizzazioni e/o persone per servizi digitali pervasivi. Il loro numero, le loro capacità, l’ambito di utilizzo e il volume di dati continuano a crescere e cambiare rapidamente. Questo comporta una maggiore complessità nelle applicazioni IoT. Così, nuovi paradigmi di calcolo distribuito, come Edge Computing (EC) o IoT-Cloud Computing, sono stati studiati per estendere le risorse dell’IoT in data center centralizzati (ad esempio, cloud) o ai margini dei sistemi di IoT (ad esempio, micro data center edge). A tale scopo il paradigma più promettente è l’Osmotic Computing (OC), motivato dalla mancanza di una soluzione scalabile, interoperabile e configurabile per la fornitura di applicazioni IoT in ambienti di calcolo complessi, eterogenei e dinamici. OC si occupa della gestione opportunistica dei microservizi (chiamati MicroELements - MELs) per migliorare la gestione della Quality of Service (QoS) e della rete, l’interoperabilità e l’efficienza delle applicazioni IoT di nuova gene- razione. Questa tesi è incentrata sullo studio del paradigma OC e approfondisce i meccanismi che permettono di ottenere un’orchestrazione sicura e affidabile dei microservizi nel continuum Cloud-to-Thing (C2T), dove le strategie di implementazione e orchestrazione dipendono dai requisiti specifici delle applicazioni IoT e dalla disponibilità di risorse fisiche/virtuali. Questo contributo può essere suddiviso in quattro parti principali. La prima parte descrive il continuum C2T in generale e affronta le sfide della gestione delle risorse. La seconda parte descrive in dettaglio i concetti di base, le metodologie e le tecnologie chiave alla base della OC e indaga su come le applicazioni IoT nel continuum C2T possono beneficiarne. La terza parte presenta OsmoticToolkit, un toolkit flessibile ed economico per la progettazione di ecosistemi osmotici da zero e l’emulazione di applicazioni reali. Infine, la quarta parte offre uno sguardo più approfondito sulle strategie di implementazione delle applicazioni e presenta un Rule-Based MatchMaker (RBMM) per supportare la distribuzione efficiente delle applicazioni nel continuum C2T.

Osmotic Computing: Secure and Dependable Microservices Orchestration in the Cloud-to-Thing Continuum / Buzachis, Mihaela Alina. - (2021 Apr 28).

Osmotic Computing: Secure and Dependable Microservices Orchestration in the Cloud-to-Thing Continuum

Buzachis, Mihaela Alina
2021-04-28

Abstract

Internet of Things (IoT) is a profound technology evolution incorporating billions of devices (e.g., sensors, RFIDs, smartphones, and wearables) owned by different organizations and people who are deploying and using them for pervasive digital services. Their number, capabilities, scope of use and data volume keep growing and changing rapidly, leading to higher complexity in IoT applications. Thus, new distributed computing paradigms, such as Edge Computing (EC) or IoT-Cloud Computing, have been investigated to extend IoT resources into centralized data centres (e.g., clouds) or at the edge of IoT systems (e.g., edge micro datacenters). Among the most promising ones is Osmotic Computing (OC), motivated by the lack of a scalable, interoperable, configurable solution for delivering IoT applications in complex, heterogeneous and dynamic computing environments. OC looks at the opportunistic management of microservices (called MicroELements - MELs) to improve the Quality of Service (QoS) and networking management, interoperability, and efficiency of next-generation IoT applications. This thesis investigates how OC can be leveraged to achieve secure and dependable microservices orchestration in the Cloud-to-Thing (C2T) continuum where deployment and orchestration strategies depend on IoT applications’ specific requirements and physical/virtual resources availability. This contribution can be divided into four major parts. The first part overviews the C2T continuum in general and faces the resource management challenges. The second part details basic concepts, methodologies and key technologies behind OC and investigates how IoT applications into the C2T continuum can benefit from it. The third part showcases OsmoticToolkit, a cost-effective and flexible toolkit for OC ecosystems’ from-scratch design and real-world applications emulation. Finally, the fourth part gives a more in-depth look into the application deployment strategies and presents a Rule-Based MatchMaker (RBMM) for supporting applications deployment in the C2T continuum.
28-apr-2021
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
ARENA, Felice
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
Buzachis Mihaela Alina.pdf

Open Access dal 28/05/2022

Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 23.59 MB
Formato Adobe PDF
23.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/105340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact