In recent decades, the emblematic relationship between the environment and buildings, in a key that investigates aspects of safety, comfort, and sustainability, has become a driver of technological innovation, especially regarding the performance potential of the vertical closures that make up the building envelope. These processes have enshrined closure systems' etymological and performance transition from passive-massive to active-adaptive systems. Therefore, the envelope's form and function have evolved substantially over time in both the use of materials and the performance of its components. The envelope becomes untethered from the primary structure. It acquires new specificities dictated by the need to configure itself as an osmotic membrane. It is capable of changing its adaptive-material behavior as external stresses vary, minimizing impacts and vulnerabilities resulting from extreme events. This concept has led the meaning of adaptive envelope to amplify and decline further toward new meanings that include the ability of façade systems to change their morphology by structurally supporting themselves and not overloading the primary supporting structure in the event of extreme events. Thus, the research is framed within the scope of issues related to innovative declinations of the concepts of adaptivity of nonstructural components of the building envelope, with particular reference to curtain wall systems for the management of vibration responses induced by seismic action. Indeed, although glass turns out to be the most important technological discontinuity in the entire history of architecture, some critical aspects reside in its performance characteristics, that is, its typically fragile behavior when induced by extreme stresses. As a legacy of past seismic events, it has been shown how seismic actions have the potential to impose significant in-plane loading on the façade system and can lead to damage and failure in the case of inappropriate design, insufficient connection details, and large inter-story drifts. The most critical elements being evaluated appear to be the glazed components, so many studies and research have focused on strategies that can improve the rigid behavior of these elements following glass-frame contact. The proposal to design façade systems as potential absorbers of earthquake-induced vibrations comes from another avenue of research. These seismic mitigation strategies are based on the proposed flexible connection devices, which take advantage of the mechanical compatibility between the building structure and its envelope. In this sense, the research aims to address the need to provide a general overview of the investigations conducted in the academic sector for the implementation of the performance of such systems through experimental methods and verification. The predictive nature of the design processes turns out to be a winning strategy, as it is aimed at the study of simulation activities that can assess ex-ante the performance of facades in different areas, projecting itself as a fertile field for future research developments in the field. The research trend is due, on the one hand, to the growing role of the building envelope and, on the other hand, to the increasing demand for products in the curtain wall macro-sector. The main objective of the thesis lies in the definition of an innovative experimental process for a curtain wall, mullion, and transom system, the focus of which concerns the definition of the technological-material characteristics of a frame-facade connection element, capable of responding adaptively to stresses resulting from seismic events, while maintaining its performance functionality. This is done with a view toward incremental technology-push innovation, in which product innovation of the components that constitute façade systems could have strong repercussions on process innovation. In fact, the need to use simulation tools capable of reliably and consistently reading and analyzing curtain wall systems is a prerogative of the stakeholders involved in the process. The industrial research is being carried out in partnership with a company specializing in curtain wall production and with the simulation software developers; finally, it is collaborating with a specialized testing laboratory to evaluate the performance of innovative envelopes. The research challenge is focused on designing flexible connection elements that can guarantee their functionality, not only for the safety of the occupants but also in the face of environmental requirements that influence the proper use of the building. The Research Project's experimental phase focuses on analyzing the current state of facade system performance currently in use in the Italian market. The façade performance assessments were conducted through a methodology of two steps. The first involves finite element modeling and analysis through SimSolid simulation software, provided by Altair Software and Services SL, imposing loads and displacements consistent with the indications provided by industry standards. The second step involves verification of the façade system by test procedures through a testing laboratory under serviceable and safe conditions. The final phase of the research project concerns the overlapping and validating of the results obtained through laboratory tests and simulation software. Specifically, this phase will allow defining a new design methodological approach for curtain wall systems, in which design costs and time could halve thanks to the implementation of the simulation software used so far for structural analysis of buildings. The methodological framework will also allow for the possibility of defining the functional and typological characteristics that the connecting element must asseverate to design earthquake-resistant curtain walls. The flexible connection could constitute a valid seismic mitigation strategy
Negli ultimi decenni, il rapporto emblematico tra ambiente ed edifici, in una chiave di lettura che indaga gli aspetti di sicurezza, comfort e sostenibilità, diventa driver di innovazione tecnologica soprattutto in riferimento alle potenzialità prestazionali delle chiusure verticali che compongono l’involucro edilizio. Tali processi hanno sancito il passaggio etimologico e prestazionale dei sistemi di chiusura, da sistemi passivi-massivi a sistemi attivi-adattivi. Forma e funzione dell’involucro hanno, quindi, registrato nel tempo un’evoluzione sostanziale sia nell’uso dei materiali, sia nelle prestazioni dei suoi componenti. L’involucro si svincola dalla struttura primaria ed acquisisce nuove specificità dettate dalla necessità di configurarsi come una membrana osmotica, capace di mutare il proprio comportamento adattivo-materico al variare delle sollecitazioni esterne, minimizzando gli impatti e le vulnerabilità derivanti da eventi estremi. Ciò ha portato l’accezione di involucro adattivo ad amplificarsi e declinarsi ulteriormente verso nuovi significati che comprendono la capacità dei sistemi di facciata di mutare la propria morfologia sostenendosi strutturalmente e non sovraccaricando la struttura primaria di supporto in caso di eventi estremi. La Ricerca si inquadra, quindi, nell’ambito dei temi relativi alle innovate declinazioni dei concetti di adattività dei componenti non-strutturali dell’involucro edilizio, con particolare riferimento ai sistemi di facciata continua, per la gestione delle risposte delle vibrazioni indotte dall’azione sismica. Infatti, seppur il vetro risulta essere le discontinuità tecnologica più importante di tutta la storia dell’architettura, alcuni aspetti critici risiedono nelle sue caratteristiche prestazionali, ovvero nel suo comportamento tipicamente fragile quando indotto a sollecitazioni estreme. Come lascito degli eventi sismici passati, è stato dimostrato come le azioni sismiche possono potenzialmente imporre un carico significativo in piano sul sistema di facciata e possono portare a danni e rotture nel caso di una progettazione non appropriata, dettagli di connessione insufficienti e grandi derive interpiano. Gli elementi più critici oggetto di valutazione risultano essere i componenti vetrati, per cui molti studi e ricerche si sono concentrati su strategie che possano migliorare il comportamento rigido di questi elementi in seguito al contatto tra vetro-telaio. Da un altro versante di ricerca, invece, deriva la proposta di progettare i sistemi di facciata come potenziali assorbitori delle vibrazioni indotte dal terremoto. Queste strategie di mitigazione sismica sono basate sulla proposta di dispositivi di connessione flessibile, che sfruttano la compatibilità meccanica tra la struttura dell'edificio e il suo involucro. In questo senso la ricerca mira a rispondere all'esigenza di fornire una panoramica generale sulle indagini condotte nel settore accademico per l’implementazione delle performance di tali sistemi attraverso metodi e verifiche sperimentali. Il carattere predittivo dei processi di progettazione risulta una strategia vincente, poiché è rivolto allo studio delle attività di simulazione in grado di valutare ex ante le performance delle facciate in diversi ambiti, proiettandosi come campo fertile per gli sviluppi delle ricerche future nel settore. Il trend di ricerca è dovuto, da un lato, al crescente ruolo che riveste l’involucro edilizio, dall’altro, all’aumento della domanda di produzione nel macro-settore delle facciate continue. L’obiettivo principale della tesi risiede nella definizione di un innovato processo di sperimentazione per un sistema di facciata continua, a montanti e traversi, il cui focus riguarda la definizione delle caratteristiche tecnologiche-materiche di un elemento di connessione telaio-facciata, in grado di rispondere in modo adattivo alle sollecitazioni derivanti dagli eventi sismici, mantenendo le proprie funzionalità prestazionali. Ciò avviene in un’ottica che si orienta verso un’innovazione incrementale di tipo technology-push, in cui l’innovazione di prodotto dei componenti che costituiscono i sistemi di facciata potrebbe avere forti ripercussioni sull’innovazione processo. Di fatti, la necessità di avvalersi di strumenti di simulazione che siano in grado di leggere e analizzare in modo affidabile e coerente i sistemi di facciata continua, risulta una prerogativa gli stakeholder coinvolti nel processo. La ricerca, di tipo industriale, è svolta in partenariato con un’impresa specializzata nella produzione di facciate continue e con gli sviluppatori di un software di simulazione, infine, si avvale della collaborazione di un laboratorio di testing specializzato per valutare le performance per gli involucri innovativi. La sfida della ricerca è incentrata verso la progettazione di elementi di connessione flessibile in grado di garantire la propria funzionalità, non solo per la sicurezza degli occupanti, ma anche a fronte dei requisiti ambientali che influenzano il corretto uso dell’edificio. La fase sperimentale del Progetto di Ricerca s’incentra sull’analisi dello stato attuale delle performance del sistema di facciata, correntemente in uso nel mercato italiano. Le valutazioni sulle prestazioni della facciata sono state condotte attraverso una metodologia che è scandita da due step. Il primo che riguarda la modellazione e l’analisi agli elementi finiti attraverso software di simulazione SimSolid, fornito da Altair Software and Services SL, imponendo carichi e spostamenti coerenti con le indicazioni fornite dalle normative di settore. Il secondo step attraverso la verifica del sistema di facciata tramite procedure di prova attraverso un laboratorio di prova, in condizioni di servizio e di sicurezza. La fase conclusiva del progetto di ricerca riguarda la sovrapposizione e validazione dei risultati ottenuti tramite test di laboratorio e software di simulazione. Nello specifico questa fase permetterà definire un nuovo approccio metodologico progettuale per i sistemi di facciata continua, in cui i costi e i tempi di progettazione potrebbero essere dimezzati grazie all’implementazione del software di simulazione finora utilizzato per le analisi strutturali degli edifici. L’iter metodologico consente inoltre di poter definire le caratteristiche funzionali e tipologiche che l’elemento di connessione deve asseverare per la progettazione di facciate continue antisismiche, costituendosi come una valida strategia di mitigazione sismica
Seismic Mitigation Strategies di componenti adattivi non-strutturali per gli involucri edilizi. Processi di sperimentazione per il miglioramento delle prestazioni sismiche attraverso Simulazione e Testing / Sansotta, Sara. - (2023 Apr 17).
Seismic Mitigation Strategies di componenti adattivi non-strutturali per gli involucri edilizi. Processi di sperimentazione per il miglioramento delle prestazioni sismiche attraverso Simulazione e Testing
Sansotta, Sara
2023-04-17
Abstract
In recent decades, the emblematic relationship between the environment and buildings, in a key that investigates aspects of safety, comfort, and sustainability, has become a driver of technological innovation, especially regarding the performance potential of the vertical closures that make up the building envelope. These processes have enshrined closure systems' etymological and performance transition from passive-massive to active-adaptive systems. Therefore, the envelope's form and function have evolved substantially over time in both the use of materials and the performance of its components. The envelope becomes untethered from the primary structure. It acquires new specificities dictated by the need to configure itself as an osmotic membrane. It is capable of changing its adaptive-material behavior as external stresses vary, minimizing impacts and vulnerabilities resulting from extreme events. This concept has led the meaning of adaptive envelope to amplify and decline further toward new meanings that include the ability of façade systems to change their morphology by structurally supporting themselves and not overloading the primary supporting structure in the event of extreme events. Thus, the research is framed within the scope of issues related to innovative declinations of the concepts of adaptivity of nonstructural components of the building envelope, with particular reference to curtain wall systems for the management of vibration responses induced by seismic action. Indeed, although glass turns out to be the most important technological discontinuity in the entire history of architecture, some critical aspects reside in its performance characteristics, that is, its typically fragile behavior when induced by extreme stresses. As a legacy of past seismic events, it has been shown how seismic actions have the potential to impose significant in-plane loading on the façade system and can lead to damage and failure in the case of inappropriate design, insufficient connection details, and large inter-story drifts. The most critical elements being evaluated appear to be the glazed components, so many studies and research have focused on strategies that can improve the rigid behavior of these elements following glass-frame contact. The proposal to design façade systems as potential absorbers of earthquake-induced vibrations comes from another avenue of research. These seismic mitigation strategies are based on the proposed flexible connection devices, which take advantage of the mechanical compatibility between the building structure and its envelope. In this sense, the research aims to address the need to provide a general overview of the investigations conducted in the academic sector for the implementation of the performance of such systems through experimental methods and verification. The predictive nature of the design processes turns out to be a winning strategy, as it is aimed at the study of simulation activities that can assess ex-ante the performance of facades in different areas, projecting itself as a fertile field for future research developments in the field. The research trend is due, on the one hand, to the growing role of the building envelope and, on the other hand, to the increasing demand for products in the curtain wall macro-sector. The main objective of the thesis lies in the definition of an innovative experimental process for a curtain wall, mullion, and transom system, the focus of which concerns the definition of the technological-material characteristics of a frame-facade connection element, capable of responding adaptively to stresses resulting from seismic events, while maintaining its performance functionality. This is done with a view toward incremental technology-push innovation, in which product innovation of the components that constitute façade systems could have strong repercussions on process innovation. In fact, the need to use simulation tools capable of reliably and consistently reading and analyzing curtain wall systems is a prerogative of the stakeholders involved in the process. The industrial research is being carried out in partnership with a company specializing in curtain wall production and with the simulation software developers; finally, it is collaborating with a specialized testing laboratory to evaluate the performance of innovative envelopes. The research challenge is focused on designing flexible connection elements that can guarantee their functionality, not only for the safety of the occupants but also in the face of environmental requirements that influence the proper use of the building. The Research Project's experimental phase focuses on analyzing the current state of facade system performance currently in use in the Italian market. The façade performance assessments were conducted through a methodology of two steps. The first involves finite element modeling and analysis through SimSolid simulation software, provided by Altair Software and Services SL, imposing loads and displacements consistent with the indications provided by industry standards. The second step involves verification of the façade system by test procedures through a testing laboratory under serviceable and safe conditions. The final phase of the research project concerns the overlapping and validating of the results obtained through laboratory tests and simulation software. Specifically, this phase will allow defining a new design methodological approach for curtain wall systems, in which design costs and time could halve thanks to the implementation of the simulation software used so far for structural analysis of buildings. The methodological framework will also allow for the possibility of defining the functional and typological characteristics that the connecting element must asseverate to design earthquake-resistant curtain walls. The flexible connection could constitute a valid seismic mitigation strategyFile | Dimensione | Formato | |
---|---|---|---|
Sansotta Sara.pdf
Open Access dal 16/05/2024
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
30.28 MB
Formato
Adobe PDF
|
30.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.