This thesis deals about analytical, numerical and experimental procedures for the design and realization of metallic and dielectric particle accelerators, along with related devices. The first part, performed in the European Spallation Source (ESS) framework, is dedicated to the metallic accelerators and in particular to the ESS Drift Tube Linac. The numerical simulation of such structures, large cylindrical cavities composed of many cells, is not an easy task but results an essential step in the cavity electromagnetic design. In order to ease the simulation of large metallic structures such as the DTL, some analytical and numerical methods have been developed. These methods are able to predict the frequency error introduced when the real structure is discretized inside the commercial electromagnetic simulators or can create computationally advantageous symmetries into the considered structure. These techniques have been employed in the electromagnetic design of a DTL tank cold model, which has been realized in order to test the field measurement setup and to obtain a field stabilization procedure to counteract random manufacturing errors that could degrade the accelerator performances. The second part of this thesis, performed in the DiElectric and METallic Radiofrequency Accelerator (DEMETRA) framework, is focused on the study and numerical simulation of Dielectric Laser Accelerator devices. In particular, the woodpile structure has been studied through the use of numerical tools and an alumina prototype, operating at X-band, has been realized and experimentally characterized in terms of S-parameters and on-axis electric field, showing very good agreement with the numerical results. The knowledge acquired with the alumina prototype has led the way to the realization of a silicon prototype, operating in the W-band, which has been successfully characterized.
La presente tesi si occupa dello sviluppo di procedure analitiche, numeriche e sperimentali per il design e la realizzazione di acceleratori di particelle metallici e dielettrici, assieme a dispositivi ad essi correlati. La prima parte della tesi, sviluppata all’interno del framework European Spallation Source (ESS), è dedicata agli acceleratori metallici ed in particolare al Drift Tube Linac (DTL) di ESS. La simulazione numerica di queste strutture, cavità cilindriche di dimensioni elevate composte da molte celle, non risulta un compito semplice; tuttavia è uno step essenziale nel design elettromagnetico dell’acceleratore. Per rendere più semplice il design elettromagnetico di strutture metalliche complesse come il DTL, alcuni metodi analitici e numerici sono stati sviluppati. Questi metodi permettono di predire l’errore in frequenza introdotto quando la struttura reale viene discretizzata all’interno del simulatore elettromagnetico commerciale, oppure permettono di creare opportune simmetrie all’interno della struttura considerata, sfruttabili per alleggerire il carico computazionale della simulazione. I suddetti metodi sono stati utilizzati per il design elettromagnetico di una cavità DTL in alluminio per test RF, che è stata poi realizzata con l’obiettivo di ricavare un setup di misura del campo elettrico tramite la tecnica di bead-pull e per implementare una procedura sperimentale di stabilizzazione del campo al fine di contrastare gli effetti degli errori realizzativi sullo stesso. La seconda parte della tesi, sviluppata all’interno del framework DiElectric and METallic Radiofrequency Accelerator (DEMETRA), è focalizzata sullo studio e sulla simulazione numerica di componenti per futuri acceleratori dielettrici (DLA). In particolare, la struttura dielettrica periodica denominata woodpile è stata selezionata e studiata tramite tool numerici ed un prototipo in alumina, operante in banda X, è stato realizzato e caratterizzato sperimentalmente: parametri S e campo elettrico assiale misurati confermano l’ottimo accordo coi risultati numerici precedentemente ottenuti. L’esperienza acquisita col prototipo in alumina ha inoltre permesso la realizzazione di una seconda struttura in silicio, operante in banda W, la cui caratterizzazione sperimentale ha confermato i risultati numerici.
Numerical modeling and realization of microwave devices for dielectric and metallic accelerators / Mauro, Giorgio Sebastiano. - (2020 May 21).
Numerical modeling and realization of microwave devices for dielectric and metallic accelerators
2020-05-21
Abstract
This thesis deals about analytical, numerical and experimental procedures for the design and realization of metallic and dielectric particle accelerators, along with related devices. The first part, performed in the European Spallation Source (ESS) framework, is dedicated to the metallic accelerators and in particular to the ESS Drift Tube Linac. The numerical simulation of such structures, large cylindrical cavities composed of many cells, is not an easy task but results an essential step in the cavity electromagnetic design. In order to ease the simulation of large metallic structures such as the DTL, some analytical and numerical methods have been developed. These methods are able to predict the frequency error introduced when the real structure is discretized inside the commercial electromagnetic simulators or can create computationally advantageous symmetries into the considered structure. These techniques have been employed in the electromagnetic design of a DTL tank cold model, which has been realized in order to test the field measurement setup and to obtain a field stabilization procedure to counteract random manufacturing errors that could degrade the accelerator performances. The second part of this thesis, performed in the DiElectric and METallic Radiofrequency Accelerator (DEMETRA) framework, is focused on the study and numerical simulation of Dielectric Laser Accelerator devices. In particular, the woodpile structure has been studied through the use of numerical tools and an alumina prototype, operating at X-band, has been realized and experimentally characterized in terms of S-parameters and on-axis electric field, showing very good agreement with the numerical results. The knowledge acquired with the alumina prototype has led the way to the realization of a silicon prototype, operating in the W-band, which has been successfully characterized.File | Dimensione | Formato | |
---|---|---|---|
Mauro Giorgio Sebastiano.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
27.63 MB
Formato
Adobe PDF
|
27.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.