The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.
Population dynamics and temperature-dependent development of Chrysomphalus aonidum (L.) to aid sustainable pest management decisions / Campolo, O; Malacrinò, A; Laudani, F; Maione, V; Zappalà, L; Palmeri, Vincenzo. - In: NEOTROPICAL ENTOMOLOGY. - ISSN 1519-566X. - 43:(2014), pp. 453-464. [10.1007/s13744-014-0226-9]
Population dynamics and temperature-dependent development of Chrysomphalus aonidum (L.) to aid sustainable pest management decisions
Campolo O;Malacrinò A;PALMERI, Vincenzo
2014-01-01
Abstract
The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.