This paper deals with sensitivity analysis of the stationary stochastic response of linear discretized structures with uncertain stiffness parameters subjected to stationary multi-correlated Gaussian random excitation. Approximate explicit expressions of the sensitivities of the probabilistic characteristics of the response are derived. The proposed procedure relies on the so-called rational series expansion (RSE), recently derived by the authors as an alternative explicit form of the Neumann expansion of the inverse of an invertible matrix with a modification of rank r. For validation purposes, numerical results concerning a wind-excited truss structure with uncertain Young’s moduli have been included in the paper.
Oggetto del presente lavoro è l’analisi di sensitività della risposta aleatoria stazionaria di un sistema lineare discretizzato con rigidezza incerta soggetto a un processo aleatorio Gaussiano stazionario multi-correlato. Vengono determinate espressioni esplicite approssimate delle sensitività delle caratteristiche probabilistiche della risposta. Il metodo proposto si basa sulla cosiddetta rational series expansion (RSE), ovvero su una forma esplicita alternativa della espansione di Neumann derivata recentemente dagli autori per la determinazione dell’inversa di una matrice soggetta a una modifica di rango r. L’accuratezza del metodo proposto è dimostrata dai risultati numerici concernenti una travatura reticolare con moduli elastici incerti soggetta all’azione del vento.
Explicit expressions of response sensitivities for structural systems subjected to stationary random processes / Muscolino, G; Santoro, R; Sofi, Alba. - In: MECCANICA DEI MATERIALI E DELLE STRUTTURE. - ISSN 2035-679X. - 3:1(2012), pp. 1-8.
Explicit expressions of response sensitivities for structural systems subjected to stationary random processes
SOFI, Alba
2012-01-01
Abstract
This paper deals with sensitivity analysis of the stationary stochastic response of linear discretized structures with uncertain stiffness parameters subjected to stationary multi-correlated Gaussian random excitation. Approximate explicit expressions of the sensitivities of the probabilistic characteristics of the response are derived. The proposed procedure relies on the so-called rational series expansion (RSE), recently derived by the authors as an alternative explicit form of the Neumann expansion of the inverse of an invertible matrix with a modification of rank r. For validation purposes, numerical results concerning a wind-excited truss structure with uncertain Young’s moduli have been included in the paper.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.