This paper focuses on the estimation of energy consumption of Electric Vehicles (EVs) by means of models derived from traffic flow theory and vehicle locomotion laws. In particular, it proposes a bi-level procedure with the aim to calibrate (or update) the whole parameters of traffic flow models and energy consumption laws by means of Floating Car Data (FCD) and probe vehicle data. The reported models may be part of a procedure for designing and planning transport and energy systems. This aim is to verify if, and in what amount, the existing parameters of the resistances/energy consumptions model calibrated in the literature for Internal Combustion Engines Vehicles (ICEVs) change for EVs, considering the above circular dependency between supply, demand, and supply–demand interaction. The final results concern updated parameters to be used for eco-driving and eco-routing applications for design and a planning transport system adopting a multidisciplinary approach. The focus of this manuscript is on the transport area. Experimental data concern vehicular data extracted from traffic (floating car data and probe vehicle data) and energy consumption data measured for equipped EVs performing trips inside a sub-regional area, located in the Città Metropolitana of Reggio Calabria (Italy). The results of the calibration process are encouraging, as they allow for updating parameters related to energy consumption and energy recovered in terms of EVs obtained from data observed in real conditions. The latter term is relevant in EVs, particularly on urban routes where drivers experience unstable traffic conditions.

Traffic and energy consumption modelling of electric vehicles: Parameter updating from floating and probe vehicle data / Croce, A. I.; Musolino, G.; Rindone, C.; Vitetta, A.. - In: ENERGIES. - ISSN 1996-1073. - 15:1(2022), p. 82. [10.3390/en15010082]

Traffic and energy consumption modelling of electric vehicles: Parameter updating from floating and probe vehicle data

Musolino G.
;
Rindone C.;Vitetta A.
2022-01-01

Abstract

This paper focuses on the estimation of energy consumption of Electric Vehicles (EVs) by means of models derived from traffic flow theory and vehicle locomotion laws. In particular, it proposes a bi-level procedure with the aim to calibrate (or update) the whole parameters of traffic flow models and energy consumption laws by means of Floating Car Data (FCD) and probe vehicle data. The reported models may be part of a procedure for designing and planning transport and energy systems. This aim is to verify if, and in what amount, the existing parameters of the resistances/energy consumptions model calibrated in the literature for Internal Combustion Engines Vehicles (ICEVs) change for EVs, considering the above circular dependency between supply, demand, and supply–demand interaction. The final results concern updated parameters to be used for eco-driving and eco-routing applications for design and a planning transport system adopting a multidisciplinary approach. The focus of this manuscript is on the transport area. Experimental data concern vehicular data extracted from traffic (floating car data and probe vehicle data) and energy consumption data measured for equipped EVs performing trips inside a sub-regional area, located in the Città Metropolitana of Reggio Calabria (Italy). The results of the calibration process are encouraging, as they allow for updating parameters related to energy consumption and energy recovered in terms of EVs obtained from data observed in real conditions. The latter term is relevant in EVs, particularly on urban routes where drivers experience unstable traffic conditions.
2022
Electric vehicles (EVs)
Energy consumption models
Floating car data (FCD)
Probe vehicle data
Sustainable mobility
Traffic flow models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/118060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact