Understanding Nitrogen Use Efficiency (NUE) physiological and molecular mechanisms in high N demanding crops has become decisive for improving NUE in sustainable cropping systems. How the Nitrogen Utilization Efficiency (NUtE) component contributes to the NUE enhancement under nitrate limiting conditions in tomato remains to be elucidated. This study deals with the changes in several important nitrate metabolism related gene expressions (nitrate assimilation, transport, remobilization and storage/sequestration) engendered by short and long-term limiting nitrate exposure in two selected NUE-contrasting genotypes, Regina Ostuni (RO) and UC82, efficient and inefficient, respectively. At short-term, nitrate limiting supply triggered higher SlCLCa and SlNRT1.7 expressions in RO root and shoot, respectively, suggesting a higher nitrate storage and remobilization compared to UC82, explaining how RO withstood the nitrate deficiency better than UC82. At long-term, nitrate reductase (SlNR) and nitrite reductase (SlNIR) expression were not significantly different between nitrate treatments in RO, while significantly down-regulated under nitrate limiting treatment in UC82. In addition, SlCLCa and SlNRT1.8 transcript levels were significantly lower in RO, while those of SlNRT1.5 and SlNR appeared significantly higher. This suggested that the efficient genotype stored less nitrate compared to UC82, which was allocated and assimilated to the shoot. More interestingly, the expression of SlNRT2.7 was significantly higher in RO shoot compared to UC82 and strongly correlated to RO higher growth as well as to NUE and NUtE component. Our findings underlined the differential regulation of N-metabolism genes that may confer to NUtE component a pivotal role in NUE enhancement in tomato.

New insights into N-utilization efficiency in tomato (Solanum lycopersicum L.) under N limiting condition

Aci M. M.;Lupini A.;Sunseri F.;Abenavoli M. R.
2021

Abstract

Understanding Nitrogen Use Efficiency (NUE) physiological and molecular mechanisms in high N demanding crops has become decisive for improving NUE in sustainable cropping systems. How the Nitrogen Utilization Efficiency (NUtE) component contributes to the NUE enhancement under nitrate limiting conditions in tomato remains to be elucidated. This study deals with the changes in several important nitrate metabolism related gene expressions (nitrate assimilation, transport, remobilization and storage/sequestration) engendered by short and long-term limiting nitrate exposure in two selected NUE-contrasting genotypes, Regina Ostuni (RO) and UC82, efficient and inefficient, respectively. At short-term, nitrate limiting supply triggered higher SlCLCa and SlNRT1.7 expressions in RO root and shoot, respectively, suggesting a higher nitrate storage and remobilization compared to UC82, explaining how RO withstood the nitrate deficiency better than UC82. At long-term, nitrate reductase (SlNR) and nitrite reductase (SlNIR) expression were not significantly different between nitrate treatments in RO, while significantly down-regulated under nitrate limiting treatment in UC82. In addition, SlCLCa and SlNRT1.8 transcript levels were significantly lower in RO, while those of SlNRT1.5 and SlNR appeared significantly higher. This suggested that the efficient genotype stored less nitrate compared to UC82, which was allocated and assimilated to the shoot. More interestingly, the expression of SlNRT2.7 was significantly higher in RO shoot compared to UC82 and strongly correlated to RO higher growth as well as to NUE and NUtE component. Our findings underlined the differential regulation of N-metabolism genes that may confer to NUtE component a pivotal role in NUE enhancement in tomato.
Nitrate assimilation
Nitrate remobilization
Nitrate storage
Nitrate transport
Nitrogen deficiency
NUtE
File in questo prodotto:
File Dimensione Formato  
2021 Aci et al tomato NUE_editor.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/118741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact