As we enter a new era of next-generation wireless systems represented by Fifth Generation (5G) New Radio (NR) technology, it is essential to grasp the recent progress in their standardization and development. This article offers a concise survey of the 5G NR system design that aims at introducing its features according to the relevant Third Generation Partnership (3GPP) specifications. Our focus is set on the flexibility of 5G NR, which refers to its capability to support novel services and technologies, such as enhanced Mobile Broadband (eMBB) and Internet of Things (IoT) for massive Machine Type Communications (mMTC) while satisfying the underlying quality requirements. The key enablers of the 5G NR operation are scalable numerology, ultra-lean and beam-centric design, support for low latency, spectrum extension, and forward compatibility. This work summarizes these important features by studying the overall 5G architecture and the user-/control-plane protocol stacks specified by 3GPP. Furthermore, the impact of scalable numerology on system performance is discussed. Finally, we also consider open challenges and future research directions.

5G NR system design: a concise survey of key features and capabilities

Federica Rinaldi
;
Sara Pizzi
2021

Abstract

As we enter a new era of next-generation wireless systems represented by Fifth Generation (5G) New Radio (NR) technology, it is essential to grasp the recent progress in their standardization and development. This article offers a concise survey of the 5G NR system design that aims at introducing its features according to the relevant Third Generation Partnership (3GPP) specifications. Our focus is set on the flexibility of 5G NR, which refers to its capability to support novel services and technologies, such as enhanced Mobile Broadband (eMBB) and Internet of Things (IoT) for massive Machine Type Communications (mMTC) while satisfying the underlying quality requirements. The key enablers of the 5G NR operation are scalable numerology, ultra-lean and beam-centric design, support for low latency, spectrum extension, and forward compatibility. This work summarizes these important features by studying the overall 5G architecture and the user-/control-plane protocol stacks specified by 3GPP. Furthermore, the impact of scalable numerology on system performance is discussed. Finally, we also consider open challenges and future research directions.
5G, New radio, Scalable numerology, 5G use cases
File in questo prodotto:
File Dimensione Formato  
Rinaldi_2021_WirNet_5GNRSystem_editor.pdf

accesso aperto

Descrizione: Versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/120008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact