Great current progress in the materials science offers an enormous choice of novel adsorbents which may be promising for transformation and storage of low temperature heat, e.g. from renewable heat sources. This paper gives an overview of recent trends and achievements in this field. We consider possible optimization of zeolites by dealumination, further development on aluminophosphates, composites “salt in porous host matrice” and metal-organic frameworks which are currently receiving the largest share of scientific attention. The particular attention is focused on the chemical nano-tailoring and tunable adsorption behavior of these materials to satisfy the demands of appropriate heat transformation cycles. We hope that this review will give new impact on target-oriented research on the novel adsorbents for heat transformation and storage.

New materials for adsorption heat transformation and storage

BONACCORSI, Lucio Maria;
2017

Abstract

Great current progress in the materials science offers an enormous choice of novel adsorbents which may be promising for transformation and storage of low temperature heat, e.g. from renewable heat sources. This paper gives an overview of recent trends and achievements in this field. We consider possible optimization of zeolites by dealumination, further development on aluminophosphates, composites “salt in porous host matrice” and metal-organic frameworks which are currently receiving the largest share of scientific attention. The particular attention is focused on the chemical nano-tailoring and tunable adsorption behavior of these materials to satisfy the demands of appropriate heat transformation cycles. We hope that this review will give new impact on target-oriented research on the novel adsorbents for heat transformation and storage.
Adsorption heat storage; Zeolites; Aluminophosphates
File in questo prodotto:
File Dimensione Formato  
Henninger et al. - 2017 - New materials for adsorption heat transformation and storage.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/1207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 100
social impact