The post-fire hydrological processes depend on both land use and soil condition (burned or not). This study aims at understanding the variability of the water infiltration, surface runoff and erosion in burned soils under different land uses (forestland and cropland) in comparison to unburned sitesTo this aim, infiltration, runoff and soil losses after a wildfire in two pine and oak forests, and a cropland are evaluated in Zagros forests (Western Iran) using a portable rainfall simulator. This area represents one of the lands with the highest biodiversity and naturalistic value of the entire Middle East, but no similar hydrological evaluations have been conducted so far. The difference in infiltration between the burned and unburned sites under the three land uses was not significant (on the average less than 10%). The runoff and erosion due to the wildfire noticeably increased in the forestland (+95% and 60%, respectively) and slightly decreased in the cropland (−16% and −20%) in comparison to the unburned sites. In the burned croplands erosion requires much attention, because the soil loss is on an average 30-fold compared to the values measured in the forestland. This increase may be even higher, since the rainsplash erosion could be underestimated and the rill or gully erosion was not considered due to the use of a portable rainfall simulator. Therefore, the study suggests the adoption of suitable strategies in croplands of the Zagros forests, in order to limit the negative impacts of high-intensity fires and hydrogeological events. Overall, the study has provided an insight to improve the knowledge on soil hydrology under different land uses and soil conditions. This evaluation helps landscape planners to select the most suitable anti-erosive actions against erosion in fire-affected areas without any needs of long monitoring field campaigns or model implementation.

Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale / Rostami, N.; Heydari, M.; Mijan Uddin, S. M.; Lucas-Borja, M. E.; Zema, D. A.. - In: FORESTS. - ISSN 1999-4907. - 13:2(2022), p. 246. [10.3390/f13020246]

Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale

Zema D. A.
2022-01-01

Abstract

The post-fire hydrological processes depend on both land use and soil condition (burned or not). This study aims at understanding the variability of the water infiltration, surface runoff and erosion in burned soils under different land uses (forestland and cropland) in comparison to unburned sitesTo this aim, infiltration, runoff and soil losses after a wildfire in two pine and oak forests, and a cropland are evaluated in Zagros forests (Western Iran) using a portable rainfall simulator. This area represents one of the lands with the highest biodiversity and naturalistic value of the entire Middle East, but no similar hydrological evaluations have been conducted so far. The difference in infiltration between the burned and unburned sites under the three land uses was not significant (on the average less than 10%). The runoff and erosion due to the wildfire noticeably increased in the forestland (+95% and 60%, respectively) and slightly decreased in the cropland (−16% and −20%) in comparison to the unburned sites. In the burned croplands erosion requires much attention, because the soil loss is on an average 30-fold compared to the values measured in the forestland. This increase may be even higher, since the rainsplash erosion could be underestimated and the rill or gully erosion was not considered due to the use of a portable rainfall simulator. Therefore, the study suggests the adoption of suitable strategies in croplands of the Zagros forests, in order to limit the negative impacts of high-intensity fires and hydrogeological events. Overall, the study has provided an insight to improve the knowledge on soil hydrology under different land uses and soil conditions. This evaluation helps landscape planners to select the most suitable anti-erosive actions against erosion in fire-affected areas without any needs of long monitoring field campaigns or model implementation.
2022
Erosion
Soil loss
Surface runoff
Vegetation cover
Water infiltration
Wildfire
File in questo prodotto:
File Dimensione Formato  
Rostami_2022_FORESTS_Hydrological.pdf

accesso aperto

Descrizione: Versione editoriale - OPEN ACCESS
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 646.47 kB
Formato Adobe PDF
646.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/123386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact