Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancyrelated pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF coexpressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.

WRKY Gene Family Drives Dormancy Release in Onion Bulbs / Puccio, G.; Crucitti, A.; Tiberini, A.; Mauceri, A.; Taglienti, A.; Piccionello, A. P.; Carimi, F.; van Kaauwen, M.; Scholten, O.; Sunseri, F.; Vosman, B.; Mercati, F.. - In: CELLS. - ISSN 2073-4409. - 11:7(2022), p. 1100. [10.3390/cells11071100]

WRKY Gene Family Drives Dormancy Release in Onion Bulbs

Tiberini A.;Sunseri F.;
2022-01-01

Abstract

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancyrelated pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF coexpressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.
2022
Allium cepa L
Biotic stress
De novo transcriptome assembly
Onion yellow dwarf virus
RNA-seq
Transcription factor
Abscisic Acid
Gene Regulatory Networks
Gibberellins
Potyvirus
Gene Expression Regulation, Plant
Onions
File in questo prodotto:
File Dimensione Formato  
Puccio_2022_WRKY_Editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.5 MB
Formato Adobe PDF
4.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/123743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact