Golestan, a province in the North-East of Iran, is characterized by high coverage of loess deposits. Since 1963, the area has experienced approximately 200,000 ha deforestation due to land-use changes in agriculture and increasing demand for wood. Approximately, 110,000 ha of the clear-cut lands are under dry-farming, mainly for wheat cropping, and about 86,000 ha have been reforested. This IAEA funded project is the first attempt to use nuclear techniques in the East of Hircanian Forest for determination of on-site impacts of deforestation due to two land-use changes (i.e. dry farming and reforestation). Practicing long-term dry-farming led to 60% soil losses with a mean rate of 2 mm per year. The net erosion rate of croplands on loess deposits in the study area was 32.27 t ha−1 yr−1. Reforestation, cultivation of even-aged Cypress trees since 1993, showed 13 to 60 percent effectiveness in soil conservation. Dry-farming land use resulted in the loss of 95 t ha−1 soil organic carbon (SOC) stock at a mean rate of 1.7 t ha−1 over 54 years. Cultivating Cypress trees successfully restored the SOC content by 100% compared with the SOC in original forests. The conversion of dry-farming lands to orchards of olive trees since 2004, brought more income for farmers but were less effective in soil conservation because of low canopy cover of olive trees. Our data provide key information and guidance for land users and decision-makers about implementing strategic and sustainable conservation practices to restore degraded land.

Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan Province, Iran)

Porto P.
Methodology
;
2020-01-01

Abstract

Golestan, a province in the North-East of Iran, is characterized by high coverage of loess deposits. Since 1963, the area has experienced approximately 200,000 ha deforestation due to land-use changes in agriculture and increasing demand for wood. Approximately, 110,000 ha of the clear-cut lands are under dry-farming, mainly for wheat cropping, and about 86,000 ha have been reforested. This IAEA funded project is the first attempt to use nuclear techniques in the East of Hircanian Forest for determination of on-site impacts of deforestation due to two land-use changes (i.e. dry farming and reforestation). Practicing long-term dry-farming led to 60% soil losses with a mean rate of 2 mm per year. The net erosion rate of croplands on loess deposits in the study area was 32.27 t ha−1 yr−1. Reforestation, cultivation of even-aged Cypress trees since 1993, showed 13 to 60 percent effectiveness in soil conservation. Dry-farming land use resulted in the loss of 95 t ha−1 soil organic carbon (SOC) stock at a mean rate of 1.7 t ha−1 over 54 years. Cultivating Cypress trees successfully restored the SOC content by 100% compared with the SOC in original forests. The conversion of dry-farming lands to orchards of olive trees since 2004, brought more income for farmers but were less effective in soil conservation because of low canopy cover of olive trees. Our data provide key information and guidance for land users and decision-makers about implementing strategic and sustainable conservation practices to restore degraded land.
2020
Afforestation
Deforestation
Dry-farming land
Golestan province
Hircanian forests
Nuclear technique
Soil erosion
File in questo prodotto:
File Dimensione Formato  
Gharibreza_2020_International_editor.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/123788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact