The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.

Screening and Molecular Identification of Lactic Acid BacteriaProducing β-Glucan in Boza and Cider

Angelo Maria GIUFFRE'
;
2022-01-01

Abstract

The goal of this study was screening and molecular identification of Lactic Acid Bacteria (LAB) producing β-glucan from different species isolated from boza and cider compared to a standard strain for Lactobacillus rhamnosus NRRL 1937 (LGG). From 48 unknown isolates, four LAB strains were selected. Based on the NCBI database, their nomenclature was A3, B6, and C9 for Limosilactobacillus fermentum SH1, SH2, and SH3 along with D6 for Leuconostoc mesenteroides SH4. Also, their similarity values were 100%, 99.8%, 100%, and 100%, respectively. The potential of Exopolysaccharide (EPS) (as β-glucan) production for selected LAB strains by gtf gene, conventional PCR and gene expression using both LGG as a control and LAB 16S rRNA gene as a house-keeping gene was investigated. In addition, EPS (mg/100 mL), cell mass (mg/100 mL), pH, total carbohydrate%, total protein% and β-glucan% by the HPLC for all selected LAB isolates were studied. All results of genetic and chemical tests proved the superiority of B6 treatment for L. fermentum SH2. The results showed the superiority of B6 treatment in gtf gene expression (14.7230 ± 0.070-fold) followed by C9 and A3 treatments, which were 10.1730 ± 0.231-fold and 8.6139 ± 0.320-fold, respectively. while D6 treatment recorded the lowest value of gene expression (0.8566 ± 0.040-fold) compared to the control LGG (one-fold). The results also demonstrated that B6 treatment was superior to the other treatments in terms of EPS formation, with a value of 481 ± 1.00 mg/100 mL, followed by the C9 treatment at 440 ± 2.00 mg/100 mL, compared to the LGG (control) reaching 199.7 ± 3.51 mg/100 mL. Also, the highest % of quantitative and qualitative β-glucan in EPS was observed in B6 followed by C9, D6 and A3 which were 5.56 ± 0.01%, 4.46 ± 0.01%, 0.25 ± 0.008% and 0.12 ± 0.008%, respectively compared to control (0.31 ± 0.01%). Finally, the presented results indicate the importance of screening the local LAB isolates to obtain a superior strain for β-glucan production which will be introduced in a subsequent study under optimum conditions.
2022
Limosilactobacillus fermentum
boza
cider
gtf gene
β-glucan
HPLC analysis
File in questo prodotto:
File Dimensione Formato  
Allaith_2022_Fermentation_Screening_Editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/129806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact