The development of ultrasensitive and biocompatible Surface-Enhanced Raman Spectroscopy (SERS) substrates, able to provide uniform and reproducible signals, has become a focus of study in the last decade. Graphene, with his advantageous properties, such as photoluminescence quenching of fluorescent dyes, chemical inertness and biocompatibility, allows to overcome many important limitations of conventional metal SERS substrates. In this work, we develop ultrasensitive graphene substrates by ethanol Chemical Vapor Deposition (CVD). Large-area thin films composed of nanosized sp(2) grains surrounded by disordered regions are obtained by lowering the growth temperature from the standard 1070 degrees C to 700 degrees C. Our substrates are able to detect trace amounts of molecules, down to 6.10(-11) M, which is the lowest concentration that has been achieved in Graphene-Enhanced Raman Spectroscopy (GERS) with rhodamine 6G (R6G) as probe molecule. This outstanding result is attributable to two main features: i) more efficient charge transfer due to the energy level matching between R6G and the nanocrystalline graphene film; ii) large number of grain boundaries acting as "trapping sites" for the molecules.
Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy / Faggio, G; Grillo, R; Lisi, N; Buonocore, F; Chierchia, R; Kim, Mj; Lee, Gh; Capasso, A; Messina, G. - In: APPLIED SURFACE SCIENCE. - ISSN 0169-4332. - 599:154035(2022), pp. 1-10. [10.1016/j.apsusc.2022.154035]
Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy
Faggio, G
;Messina, G
2022-01-01
Abstract
The development of ultrasensitive and biocompatible Surface-Enhanced Raman Spectroscopy (SERS) substrates, able to provide uniform and reproducible signals, has become a focus of study in the last decade. Graphene, with his advantageous properties, such as photoluminescence quenching of fluorescent dyes, chemical inertness and biocompatibility, allows to overcome many important limitations of conventional metal SERS substrates. In this work, we develop ultrasensitive graphene substrates by ethanol Chemical Vapor Deposition (CVD). Large-area thin films composed of nanosized sp(2) grains surrounded by disordered regions are obtained by lowering the growth temperature from the standard 1070 degrees C to 700 degrees C. Our substrates are able to detect trace amounts of molecules, down to 6.10(-11) M, which is the lowest concentration that has been achieved in Graphene-Enhanced Raman Spectroscopy (GERS) with rhodamine 6G (R6G) as probe molecule. This outstanding result is attributable to two main features: i) more efficient charge transfer due to the energy level matching between R6G and the nanocrystalline graphene film; ii) large number of grain boundaries acting as "trapping sites" for the molecules.File | Dimensione | Formato | |
---|---|---|---|
Faggio_2022_apsusc_Nanocrystalline_Editor.pdf
non disponibili
Descrizione: Versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.66 MB
Formato
Adobe PDF
|
4.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Faggio_2022_APSUSC_Nanocrystalline_Post.pdf
Open Access dal 23/06/2024
Descrizione: Post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.