Mechanical impedance (MI) defines the ability of a system to vibrate as a consequence of force application. In the recent years, the correlation of this parameter with tire-road noise and other characteristics has gained certain attention. Nevertheless, the information about this topic is still insufficient. Usually, the force is set through an impulse hammer as a master and the acceleration is measured through an accelerometer as a response in order to measure the corresponding Frequency Response Function (FRF). The objectives of the study presented in this paper are i) to analyse the differences between the axial mechanical impedance (complex ratio of force and velocity referred to the same point, named driving-point impedance) and the non-axial mechanical impedance (complex ratio of the force at the point i and velocity at the point j, named transfer impedance); ii) to analyse the effect of adding crumb rubber (2% by mixture weight) and of the percentage of bitumen on the mechanical impedance for the bituminous samples. Therefore, laboratory tests on asphalt concrete specimens have been performed, using an instrumentation system composed of i) an impact hammer reporting the impact force value; ii) an impedance head measuring the direct impact force and the direct acceleration at the hitting point location; iii) a piezoelectric accelerometer measuring the transfer acceleration at a certain distance from the hitting point location. Results demonstrate that the ratio between the repeatability and the average is quite constant, while for heights higher than 10 cm, also MI tends to be independent on the height. A number of recommendations have been made based on the results of the present research.

A STUDY ON FREQUENCY RESPONSE FUNCTIONS IN PAVEMENT ENGINEERING / Pratico, F. G.; Pellicano, G.; Bolognese, M.; Licitra, G.. - In: THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING. - ISSN 1822-427X. - 18:1(2023), pp. 208-243. [10.7250/bjrbe.2023-18.595]

A STUDY ON FREQUENCY RESPONSE FUNCTIONS IN PAVEMENT ENGINEERING

Pratico F. G.;
2023-01-01

Abstract

Mechanical impedance (MI) defines the ability of a system to vibrate as a consequence of force application. In the recent years, the correlation of this parameter with tire-road noise and other characteristics has gained certain attention. Nevertheless, the information about this topic is still insufficient. Usually, the force is set through an impulse hammer as a master and the acceleration is measured through an accelerometer as a response in order to measure the corresponding Frequency Response Function (FRF). The objectives of the study presented in this paper are i) to analyse the differences between the axial mechanical impedance (complex ratio of force and velocity referred to the same point, named driving-point impedance) and the non-axial mechanical impedance (complex ratio of the force at the point i and velocity at the point j, named transfer impedance); ii) to analyse the effect of adding crumb rubber (2% by mixture weight) and of the percentage of bitumen on the mechanical impedance for the bituminous samples. Therefore, laboratory tests on asphalt concrete specimens have been performed, using an instrumentation system composed of i) an impact hammer reporting the impact force value; ii) an impedance head measuring the direct impact force and the direct acceleration at the hitting point location; iii) a piezoelectric accelerometer measuring the transfer acceleration at a certain distance from the hitting point location. Results demonstrate that the ratio between the repeatability and the average is quite constant, while for heights higher than 10 cm, also MI tends to be independent on the height. A number of recommendations have been made based on the results of the present research.
2023
crumb rubber
driving-point impedance
frequency response function
impact hammer
mechanical impedance
transfer impedance
File in questo prodotto:
File Dimensione Formato  
Praticò_2023_BJRBE_Study_Editor.pdf

accesso aperto

Licenza: Creative commons
Dimensione 5.72 MB
Formato Adobe PDF
5.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/135786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact