Eigenvalue problems for the p-Laplace operator in domains with finite volume, on noncompact Riemannian manifolds, are considered. If the domain does not coincide with the whole manifold, Neumann boundary conditions are imposed. Sharp assumptions ensuring L-q- or L-infinity-bounds for eigenfunctions are offered either in terms of the isoperimetric function or of the isocapacitary function of the domain.

Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds / Barletta, Giuseppina; Cianchi, Andrea; Maz'Ya, Vladimir. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2024), pp. 1-34. [10.1515/acv-2022-0014]

Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds.

Barletta, Giuseppina
Membro del Collaboration Group
;
2024-01-01

Abstract

Eigenvalue problems for the p-Laplace operator in domains with finite volume, on noncompact Riemannian manifolds, are considered. If the domain does not coincide with the whole manifold, Neumann boundary conditions are imposed. Sharp assumptions ensuring L-q- or L-infinity-bounds for eigenfunctions are offered either in terms of the isoperimetric function or of the isocapacitary function of the domain.
2024
Eigenfunctions, p-Laplacian, Riemannian manifold, isocapacitary inequalities, isoperimetric inequalities.
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2022-0014.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 991.77 kB
Formato Adobe PDF
991.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/135867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact