Eigenvalue problems for the p-Laplace operator in domains with finite volume, on noncompact Riemannian manifolds, are considered. If the domain does not coincide with the whole manifold, Neumann boundary conditions are imposed. Sharp assumptions ensuring L-q- or L-infinity-bounds for eigenfunctions are offered either in terms of the isoperimetric function or of the isocapacitary function of the domain.
Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds / Barletta, Giuseppina; Cianchi, Andrea; Maz'Ya, Vladimir. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - (2024), pp. 1-34. [10.1515/acv-2022-0014]
Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds.
Barletta, GiuseppinaMembro del Collaboration Group
;
2024-01-01
Abstract
Eigenvalue problems for the p-Laplace operator in domains with finite volume, on noncompact Riemannian manifolds, are considered. If the domain does not coincide with the whole manifold, Neumann boundary conditions are imposed. Sharp assumptions ensuring L-q- or L-infinity-bounds for eigenfunctions are offered either in terms of the isoperimetric function or of the isocapacitary function of the domain.File | Dimensione | Formato | |
---|---|---|---|
10.1515_acv-2022-0014.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
991.77 kB
Formato
Adobe PDF
|
991.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.