This paper focuses on the existence of solutions and energy estimates for a specific type of periodic boundary value problem. By precisely determining the parameter's localization, we demonstrate the existence of non-zero solutions and infer the presence of multiple solutions for positive parameter values. This analysis necessitates the sublinearity of the nonlinear component at both the origin and infinity. Lastly, we present a multiplicity result along with an example. The proof relies on a local minimum theorem for differentiable functionals.

Energy Estimates and Existence Results for a Quasilinear Periodic Boundary Value Problem / Ferrara, M.; Heidarkhani, S.; Moradi, S.; Caristi, G.. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5454. - 21:4(2024). [10.1007/s00009-024-02669-2]

Energy Estimates and Existence Results for a Quasilinear Periodic Boundary Value Problem

Ferrara M.
Conceptualization
;
2024-01-01

Abstract

This paper focuses on the existence of solutions and energy estimates for a specific type of periodic boundary value problem. By precisely determining the parameter's localization, we demonstrate the existence of non-zero solutions and infer the presence of multiple solutions for positive parameter values. This analysis necessitates the sublinearity of the nonlinear component at both the origin and infinity. Lastly, we present a multiplicity result along with an example. The proof relies on a local minimum theorem for differentiable functionals.
2024
Quasilinear periodic boundary value problem; weak solution; energy estimates; variational methods
File in questo prodotto:
File Dimensione Formato  
Ferrara_2024_ MJM_Energy Estimates_editor.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 442.63 kB
Formato Adobe PDF
442.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/145926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact