In this paper, we construct an iterative method with memory based on the Newton–Secants method to solve nonlinear equations. This proposed method has fourth order convergence and costs only three functions evaluation per iteration and without any evaluation of the derivative function. Acceleration of the convergence speed is achieved by an appropriate variation of a free parameter in each step. This self accelerator parameter is estimated using Newtons interpolation polynomial of third degree. The order of convergence is increased from 4 to 5.23 without any extra function evaluation. This method has the efficiency index equal to 5.2313≈1.7358 5.23 1 3 ≈ 1.7358 . We describe the analysis of the proposed method along with numerical experiments including comparison with the existing methods. Finally, the attraction basins of the proposed method are shown and compared with other existing methods.

Developing a new family of Newton–Secant method with memory based on a weight function

FERRARA, Massimiliano;
2017

Abstract

In this paper, we construct an iterative method with memory based on the Newton–Secants method to solve nonlinear equations. This proposed method has fourth order convergence and costs only three functions evaluation per iteration and without any evaluation of the derivative function. Acceleration of the convergence speed is achieved by an appropriate variation of a free parameter in each step. This self accelerator parameter is estimated using Newtons interpolation polynomial of third degree. The order of convergence is increased from 4 to 5.23 without any extra function evaluation. This method has the efficiency index equal to 5.2313≈1.7358 5.23 1 3 ≈ 1.7358 . We describe the analysis of the proposed method along with numerical experiments including comparison with the existing methods. Finally, the attraction basins of the proposed method are shown and compared with other existing methods.
Multi-point method; Nonlinear equations; Method with memory; R-order of convergence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/1499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact