We establish that the Segre product between a polynomial ring on a field K in m variables and the second squarefree Veronese subalgebra of a polynomial ring on K in n variables has the intersection degree equal to three. We describe a class of monomial ideals of the Segre product with linear quotients.

Ideals with linear quotients in Segre products / Failla, Gioia. - In: OPUSCULA MATHEMATICA. ROCZNIK AKADEMIA GÓRNICZO-HUTNICZA IM. STANISłAWA STASZICA. - ISSN 1232-9274. - 37:no.6(2017), pp. 829-837. [10.7494/OpMath.2017.37.6.829]

Ideals with linear quotients in Segre products

FAILLA, Gioia
2017-01-01

Abstract

We establish that the Segre product between a polynomial ring on a field K in m variables and the second squarefree Veronese subalgebra of a polynomial ring on K in n variables has the intersection degree equal to three. We describe a class of monomial ideals of the Segre product with linear quotients.
2017
monomial algebras, graded ideals, linear resolutions
File in questo prodotto:
File Dimensione Formato  
Failla_2017_Opus.Math._Quotients_editor.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 386.13 kB
Formato Adobe PDF
386.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/1556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact