We establish that the Segre product between a polynomial ring on a field K in m variables and the second squarefree Veronese subalgebra of a polynomial ring on K in n variables has the intersection degree equal to three. We describe a class of monomial ideals of the Segre product with linear quotients.
Ideals with linear quotients in Segre products / Failla, Gioia. - In: OPUSCULA MATHEMATICA. ROCZNIK AKADEMIA GÓRNICZO-HUTNICZA IM. STANISłAWA STASZICA. - ISSN 1232-9274. - 37:no.6(2017), pp. 829-837. [10.7494/OpMath.2017.37.6.829]
Ideals with linear quotients in Segre products
FAILLA, Gioia
2017-01-01
Abstract
We establish that the Segre product between a polynomial ring on a field K in m variables and the second squarefree Veronese subalgebra of a polynomial ring on K in n variables has the intersection degree equal to three. We describe a class of monomial ideals of the Segre product with linear quotients.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Failla_2017_Opus.Math._Quotients_editor.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
386.13 kB
Formato
Adobe PDF
|
386.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.