The aging population has created a significant challenge affecting the world; social and healthcare systems need to ensure elderly individuals receive the necessary care services to improve their quality of life and maintain their independence. In response to this need, developing integrated digital solutions, such as IoT based wearable devices combined with artificial intelligence applications, offers a technological platform for creating Ambient Intelligence (AI) and Assisted Living (AAL) environments. These advancements can help reduce hospital admissions and lower healthcare costs. In this context, this article presents an IoT application based on MEMS (micro electro-mechanical systems) sensors integrated into a state-of-the-art microcontroller (STM55WB) for recognizing the movements of older individuals during daily activities. human activity recognition (HAR) is a field within computational engineering that focuses on automatically classifying human actions through data captured by sensors. This study has multiple objectives: to recognize movements such as grasping, leg flexion, circular arm movements, and walking in order to assess the motor skills of older individuals. The implemented system allows these movements to be detected in real time, and transmitted to a monitoring system server, where healthcare staff can analyze the data. The analysis methods employed include machine learning algorithms to identify movement patterns, statistical analysis to assess the frequency and quality of movements, and data visualization to track changes over time. These approaches enable the accurate assessment of older people’s motor skills, and facilitate the prompt identification of abnormal situations or emergencies. Additionally, a user-friendly technological solution is designed to be acceptable to the elderly, minimizing discomfort and stress associated with using technology. Finally, the goal is to ensure that the system is energy-efficient and costeffective, promoting sustainable adoption. The results obtained are promising; the model achieved a high level of accuracy in recognizing specific movements, thus contributing to a precise assessment of the motor skills of the elderly. Notably, movement recognition was accomplished using an artificial intelligence model called Random Forest.

MEMS and IoT in HAR: Effective Monitoring for the Health of Older People / Bibbò, Luigi; Angiulli, Giovanni; Laganà, Filippo; Pratticò, Danilo; Cotroneo, Francesco; LA FORESTA, Fabio; Versaci, Mario. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 15:4306(2025), pp. 1-34. [10.3390/app15084306]

MEMS and IoT in HAR: Effective Monitoring for the Health of Older People

Giovanni Angiulli;Danilo Pratticò;Francesco Cotroneo;Fabio La Foresta;Mario Versaci
2025-01-01

Abstract

The aging population has created a significant challenge affecting the world; social and healthcare systems need to ensure elderly individuals receive the necessary care services to improve their quality of life and maintain their independence. In response to this need, developing integrated digital solutions, such as IoT based wearable devices combined with artificial intelligence applications, offers a technological platform for creating Ambient Intelligence (AI) and Assisted Living (AAL) environments. These advancements can help reduce hospital admissions and lower healthcare costs. In this context, this article presents an IoT application based on MEMS (micro electro-mechanical systems) sensors integrated into a state-of-the-art microcontroller (STM55WB) for recognizing the movements of older individuals during daily activities. human activity recognition (HAR) is a field within computational engineering that focuses on automatically classifying human actions through data captured by sensors. This study has multiple objectives: to recognize movements such as grasping, leg flexion, circular arm movements, and walking in order to assess the motor skills of older individuals. The implemented system allows these movements to be detected in real time, and transmitted to a monitoring system server, where healthcare staff can analyze the data. The analysis methods employed include machine learning algorithms to identify movement patterns, statistical analysis to assess the frequency and quality of movements, and data visualization to track changes over time. These approaches enable the accurate assessment of older people’s motor skills, and facilitate the prompt identification of abnormal situations or emergencies. Additionally, a user-friendly technological solution is designed to be acceptable to the elderly, minimizing discomfort and stress associated with using technology. Finally, the goal is to ensure that the system is energy-efficient and costeffective, promoting sustainable adoption. The results obtained are promising; the model achieved a high level of accuracy in recognizing specific movements, thus contributing to a precise assessment of the motor skills of the elderly. Notably, movement recognition was accomplished using an artificial intelligence model called Random Forest.
2025
ambient assisted living
MEMS
Internet of Things
edge machine learning
IMU
HAR
healthcare
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/156566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact