The aim of this paper is to establish the existence of infinitely many solutions for perturbed Kirchhoff-type non-homogeneous Neumann problems involving two parameters. To be precise, we prove that an appropriate oscillating behaviour of the nonlinear term, even under small perturbations, ensures the existence of infinitely many solutions. Our approach is based on recent variational methods for smooth functionals defined on Orlicz-Sobolev spaces.

Perturbed Kirchhoff-type Neumann problems in Orlicz–Sobolev spaces / Ferrara, Massimiliano; Heidarkhani, S; Caristi, G. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - 71:10(2016), pp. 2008-2019. [10.1016/j.camwa.2016.03.019]

Perturbed Kirchhoff-type Neumann problems in Orlicz–Sobolev spaces

FERRARA, Massimiliano
Supervision
;
2016-01-01

Abstract

The aim of this paper is to establish the existence of infinitely many solutions for perturbed Kirchhoff-type non-homogeneous Neumann problems involving two parameters. To be precise, we prove that an appropriate oscillating behaviour of the nonlinear term, even under small perturbations, ensures the existence of infinitely many solutions. Our approach is based on recent variational methods for smooth functionals defined on Orlicz-Sobolev spaces.
2016
Infinitely many solutions; Perturbed non-homogeneous Neumann problem; Kirchhoff-type problem; Orlicz-Sobolev space; Variational methods; Critical point theory
File in questo prodotto:
File Dimensione Formato  
Ferrara et al CM&A 2016.pdf

non disponibili

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 401.76 kB
Formato Adobe PDF
401.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/1589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact