Federated Learning (FL), a key paradigm in privacy-preserving and distributed machine learning (ML), enables collaborative model training across decentralized data sources without requiring raw data exchange. FL enables collaborative model training across decentralized data sources while preserving privacy. However, selecting appropriate clients remains a major challenge, especially in heterogeneous environments with diverse battery levels, privacy needs, and learning capacities. In this work, a centralized reward-based payoff strategy (RBPS) with cooperative intent is proposed for client selection. In RBPS, each client evaluates participation based on locally measured battery level, privacy requirement, and the model’s accuracy in the current round computing a payoff from these factors and electing to participate if the payoff exceeds a predefined threshold. Participating clients then receive the updated global model. By jointly optimizing model accuracy, privacy preservation, and battery-level constraints, RBPS realizes a multi-objective selection mechanism. Under realistic simulations of client heterogeneity, RBPS yields more robust and efficient training compared to existing methods, confirming its suitability for deployment in resource-constrained FL settings. Experimental analysis demonstrates that RBPS offers significant advantages over state-of-the-art (SOA) client selection methods, particularly those relying on a single selection criterion such as accuracy, battery, or privacy alone. These one-dimensional approaches often lead to trade-offs where improvements in one aspect come at the cost of another. In contrast, RBPS leverages client heterogeneity not as a limitation, but as a strategic asset to maintain and balance all critical characteristics simultaneously. Rather than optimizing performance for a single device type or constraint, RBPS benefits from the diversity of heterogeneous clients, enabling improved accuracy, energy preservation, and privacy protection all at once. This is achieved by dynamically adapting the selection strategy to the strengths of different client profiles. Unlike homogeneous environments, where only one capability tends to dominate, RBPS ensures that no key property is sacrificed. RBPS thus aligns more closely with real-world FL deployments, where mixed-device participation is common and balanced optimization is essential.

Client Selection in Federated Learning on Resource-Constrained Devices: A Game Theory Approach / Dakhia, Zohra; Merenda, Massimo. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 15:13 (7556)(2025), pp. 1-31. [10.3390/app15137556]

Client Selection in Federated Learning on Resource-Constrained Devices: A Game Theory Approach

Massimo Merenda
2025-01-01

Abstract

Federated Learning (FL), a key paradigm in privacy-preserving and distributed machine learning (ML), enables collaborative model training across decentralized data sources without requiring raw data exchange. FL enables collaborative model training across decentralized data sources while preserving privacy. However, selecting appropriate clients remains a major challenge, especially in heterogeneous environments with diverse battery levels, privacy needs, and learning capacities. In this work, a centralized reward-based payoff strategy (RBPS) with cooperative intent is proposed for client selection. In RBPS, each client evaluates participation based on locally measured battery level, privacy requirement, and the model’s accuracy in the current round computing a payoff from these factors and electing to participate if the payoff exceeds a predefined threshold. Participating clients then receive the updated global model. By jointly optimizing model accuracy, privacy preservation, and battery-level constraints, RBPS realizes a multi-objective selection mechanism. Under realistic simulations of client heterogeneity, RBPS yields more robust and efficient training compared to existing methods, confirming its suitability for deployment in resource-constrained FL settings. Experimental analysis demonstrates that RBPS offers significant advantages over state-of-the-art (SOA) client selection methods, particularly those relying on a single selection criterion such as accuracy, battery, or privacy alone. These one-dimensional approaches often lead to trade-offs where improvements in one aspect come at the cost of another. In contrast, RBPS leverages client heterogeneity not as a limitation, but as a strategic asset to maintain and balance all critical characteristics simultaneously. Rather than optimizing performance for a single device type or constraint, RBPS benefits from the diversity of heterogeneous clients, enabling improved accuracy, energy preservation, and privacy protection all at once. This is achieved by dynamically adapting the selection strategy to the strengths of different client profiles. Unlike homogeneous environments, where only one capability tends to dominate, RBPS ensures that no key property is sacrificed. RBPS thus aligns more closely with real-world FL deployments, where mixed-device participation is common and balanced optimization is essential.
2025
federated learning; client selection; game theory; cooperative learning; heterogeneous devices; reward-based payoff strategy
File in questo prodotto:
File Dimensione Formato  
Dakhia_2025_AppScie_Client_Editor.pdf

accesso aperto

Descrizione: Versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.06 MB
Formato Adobe PDF
9.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/159326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact