The extension of high-speed rail (HSR) lines around the world is increasing. The largest network today is in China, followed by Spain, Japan, France, and Italy; currently, new lines are being built in Morocco and Saudi Arabia. The goal of the new lines built is to drastically reduce the time distances between the extreme railway terminals by intervening on the two main components of time: space and speed. The two components have been investigated in various fields of engineering for design conditions (ex ante/a priori). In the literature, there is no analysis of what happened in the realization of the projects (ex post/retrospective). The research problem that arises is to analyze the high-speed lines built in order to verify, given a pair of extreme terminals, how much the length is reduced by passing from a conventional line to a high-speed line, and to verify how this length is getting closer and closer to the distance as the crow flies. The reduction of spatial distance produces direct connections between two territories, making the railway system (HSR) more competitive compared to other transport alternatives (e.g., air travel). To address the problem posed, information and data are collected on European HSR lines, which constitute a sufficiently homogeneous set in terms of railway and structural standards. The planimetric characteristics of specially built lines such as HSR are examined. A test method is proposed, consisting of a model that is useful to compare the length along the HSR line, with direct lengths, and existing conventional lines. The results obtained from the elaborations offer a first answer to the problem posed, demonstrating that in the HSR lines realized the spatial distances approach the distance as the crow flies between the cities located at the extremes, and are always shorter than the lengths of conventional lines. The final indications that can be drawn concern the possibility of using the results obtained as a reference for decision-makers and planners involved in the transport planning process at national and international level. Future research directions should study the values of the indicators in other large HSR networks, such as those built in Asia, and more generally study all the elements of the lines specially built to allow better sustainable planning, reducing the negative elements found and increasing the positive ones.
High-Speed Railway Planning for Sustainable Development: The Role of Length Between Conventional Line and Straight Length / Russo, Francesco; Rindone, Corrado; Maiolo, Giuseppe A.. - In: FUTURE TRANSPORTATION. - ISSN 2673-7590. - 5:2(2025). [10.3390/futuretransp5020068]
High-Speed Railway Planning for Sustainable Development: The Role of Length Between Conventional Line and Straight Length
Russo, FrancescoSupervision
;Rindone, Corrado
Methodology
;Maiolo, Giuseppe A.Data Curation
2025-01-01
Abstract
The extension of high-speed rail (HSR) lines around the world is increasing. The largest network today is in China, followed by Spain, Japan, France, and Italy; currently, new lines are being built in Morocco and Saudi Arabia. The goal of the new lines built is to drastically reduce the time distances between the extreme railway terminals by intervening on the two main components of time: space and speed. The two components have been investigated in various fields of engineering for design conditions (ex ante/a priori). In the literature, there is no analysis of what happened in the realization of the projects (ex post/retrospective). The research problem that arises is to analyze the high-speed lines built in order to verify, given a pair of extreme terminals, how much the length is reduced by passing from a conventional line to a high-speed line, and to verify how this length is getting closer and closer to the distance as the crow flies. The reduction of spatial distance produces direct connections between two territories, making the railway system (HSR) more competitive compared to other transport alternatives (e.g., air travel). To address the problem posed, information and data are collected on European HSR lines, which constitute a sufficiently homogeneous set in terms of railway and structural standards. The planimetric characteristics of specially built lines such as HSR are examined. A test method is proposed, consisting of a model that is useful to compare the length along the HSR line, with direct lengths, and existing conventional lines. The results obtained from the elaborations offer a first answer to the problem posed, demonstrating that in the HSR lines realized the spatial distances approach the distance as the crow flies between the cities located at the extremes, and are always shorter than the lengths of conventional lines. The final indications that can be drawn concern the possibility of using the results obtained as a reference for decision-makers and planners involved in the transport planning process at national and international level. Future research directions should study the values of the indicators in other large HSR networks, such as those built in Asia, and more generally study all the elements of the lines specially built to allow better sustainable planning, reducing the negative elements found and increasing the positive ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


