The study aims at analyzing the performance of Phase Change Materials (PCMs) in residential housing for different climates. This paper presents the results of an experiment performed in the Concordia University Solar Simulator and Environmental Chamber research facility (SSEC, Montreal, Canada). PCM boards were embedded on the back wall of a test hut placedin the climatic chamber. Several experiments were performed to explore the potential for verification of the proposed analysis and to produce enough data to perform model calibrations. Results show a strong increase in the apparent thermal inertia of the room allowing for a reduction in daily temperature fluctuations in the test hut. Simulations were carried out by means of a calibrated EnergyPlus model to broaden the analysis in both a cold Canadian climate and in a Mediterranean temperate climate. Other configurations for the setup environment were studied to simulate the issues of very hot summers in Mediterranean climate. The different configurations ended up with mixed results for the two locations analyzed: the maximization of the solar gains and its storage in a high density multiple layer PCM wall is the better configuration for the cold climate analyzed, while its performance is non optimal for hot climates where the “emulation” of high thermal mass walls by PCM in lightweight structures requires a different positioning of the PCM panels.

PCM Thermal Energy Storage in Buildings: Experimental Study and Applications

Mistretta M
2015

Abstract

The study aims at analyzing the performance of Phase Change Materials (PCMs) in residential housing for different climates. This paper presents the results of an experiment performed in the Concordia University Solar Simulator and Environmental Chamber research facility (SSEC, Montreal, Canada). PCM boards were embedded on the back wall of a test hut placedin the climatic chamber. Several experiments were performed to explore the potential for verification of the proposed analysis and to produce enough data to perform model calibrations. Results show a strong increase in the apparent thermal inertia of the room allowing for a reduction in daily temperature fluctuations in the test hut. Simulations were carried out by means of a calibrated EnergyPlus model to broaden the analysis in both a cold Canadian climate and in a Mediterranean temperate climate. Other configurations for the setup environment were studied to simulate the issues of very hot summers in Mediterranean climate. The different configurations ended up with mixed results for the two locations analyzed: the maximization of the solar gains and its storage in a high density multiple layer PCM wall is the better configuration for the cold climate analyzed, while its performance is non optimal for hot climates where the “emulation” of high thermal mass walls by PCM in lightweight structures requires a different positioning of the PCM panels.
Phase-change materials, Building simulation, Energy Plus Model calibration
File in questo prodotto:
File Dimensione Formato  
Guarino_2015_EnergyProcedia_Thermal_editor

accesso aperto

Descrizione: Versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 546.2 kB
Formato Adobe PDF
546.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/17651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 36
social impact