We analyze an extended mechanical model in the conservative case in order to describe a dilatant granular material with rotating grains for which the kinetic energy, in addition to the usual translational one, consists of three terms owing to microstructural motions: in particular, it includes the rotation of the grains, the dilatational expansion and contraction of the individual granules and of the granules relative to one another. Hence, we model the body as a continuum with a peculiar microstructure; after we follow classical procedures and define a variational principle of local type for a perfect fluid with microstructure, in accordance with the fluid-like behavior of granular materials: the motion equations are in good agreement with those obtained by other authors. At the end the particular case of a suspension of rotating rigid granules puts in evidence the possibility for granular materials to support shear stresses through the generation of micro-rotational gradients.

Extended granular micromechanics

GIOVINE, PASQUALE
2017-01-01

Abstract

We analyze an extended mechanical model in the conservative case in order to describe a dilatant granular material with rotating grains for which the kinetic energy, in addition to the usual translational one, consists of three terms owing to microstructural motions: in particular, it includes the rotation of the grains, the dilatational expansion and contraction of the individual granules and of the granules relative to one another. Hence, we model the body as a continuum with a peculiar microstructure; after we follow classical procedures and define a variational principle of local type for a perfect fluid with microstructure, in accordance with the fluid-like behavior of granular materials: the motion equations are in good agreement with those obtained by other authors. At the end the particular case of a suspension of rotating rigid granules puts in evidence the possibility for granular materials to support shear stresses through the generation of micro-rotational gradients.
2017
Continua with microstructure, Variational principle, Granular micromechanics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/17750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact