It is well known that in the Non Destructive Testing/Evaluation (NDT/E) context, Ultrasonic Echoes (UEs) and Tests (UTs) are intensively exploited to identify and characterize defects in the Carbon Fiber Reinforced Polymer (CFRP). This paper examines the localization and the classification of defects in this material from a fuzzy geometrical point of view. In particular, starting from an experimental campaign of measurements carried out in our Lab (Laboratory of Electrical Engineering & Non-Destructive Tests and Evaluations, “Mediterranea” University of Reggio Calabria), fuzzy subsethood calculus is taken into account to translate the characterization of a defect in CFRP into a sort of “fuzzy distance” among UEs. Finally, the floor is open for any questions related to the comparison with a higher computational complexity heuristic technique.

It is well known that in the Non Destructive Testing/Evaluation (NDT/E) context, Ultrasonic Echoes (UEs) and Tests (UTs) are intensively exploited to identify and characterize defects in the Carbon Fiber Reinforced Polymer (CFRP). This paper examines the localization and the classification of defects in this material from a fuzzy geometrical point of view. In particular, starting from an experimental campaign of measurements carried out in our Lab (Laboratory of Electrical Engineering & Non-Destructive Tests and Evaluations, “Mediterranea” University of Reggio Calabria), fuzzy subsethood calculus is taken into account to translate the characterization of a defect in CFRP into a sort of “fuzzy distance” among UEs. Finally, the floor is open for any questions related to the comparison with a higher computational complexity heuristic technique.

A New Fuzzy Geometrical Approach to Classify Defects in Composite Materials

VERSACI, Mario;CALCAGNO, SALVATORE;LA FORESTA, Fabio
2012

Abstract

It is well known that in the Non Destructive Testing/Evaluation (NDT/E) context, Ultrasonic Echoes (UEs) and Tests (UTs) are intensively exploited to identify and characterize defects in the Carbon Fiber Reinforced Polymer (CFRP). This paper examines the localization and the classification of defects in this material from a fuzzy geometrical point of view. In particular, starting from an experimental campaign of measurements carried out in our Lab (Laboratory of Electrical Engineering & Non-Destructive Tests and Evaluations, “Mediterranea” University of Reggio Calabria), fuzzy subsethood calculus is taken into account to translate the characterization of a defect in CFRP into a sort of “fuzzy distance” among UEs. Finally, the floor is open for any questions related to the comparison with a higher computational complexity heuristic technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/1789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact