The performance of steel-concrete composite full strength joints endowed with concrete filled tubes, designed with a multi-objective methodology dealing with seismic actions followed by fire is presented in this paper. In detail, instead of a traditional single-objective design where fire safety and seismic safety are independently achieved and the sequence of seismic and fire loading are not taken into account, the proposed design approach guarantees: (i) both seismic safety and fire safety with regard to accidental actions; (ii) fire safety for at least 15 min fire exposure on a joint characterised by stiffness deterioration and strength degradation due to seismic loading. In order to achieve the multi-objective design, full strength beam-to-composite tubular column joints were designed by means of the component method of Eurocode 4 Part 1-1 and Eurocode 3 Part 1-8, while Eurocode 4 Part 1-2 was considered for fire design. Moreover, to face a seismic-induced fire, they were enhanced with specific joint components which will be detailed. Both the experimental programme and the results provided by seismic tests, pre-damaged tests and fire tests carried out on beam-to-column joints are presented and discussed. The results demonstrate their adequacy in terms of design and performance. Moreover, non-linear numerical simulations clearly show that these joints can be deemed adequate for moment resisting frames of medium ductility class characterised by a behaviour factor of about 4. (C) 2011 Elsevier Ltd. All rights reserved.
Post-earthquake fire and seismic performance of welded steel-concrete composite beam-to-column joints / Pucinotti, Raffaele; Bursi, Us; Demonceau, Jf. - In: JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH. - ISSN 0143-974X. - 67:9(2011), pp. 1358-1375. [10.1016/j.jcsr.2011.03.006]
Post-earthquake fire and seismic performance of welded steel-concrete composite beam-to-column joints
PUCINOTTI, RAFFAELE;
2011-01-01
Abstract
The performance of steel-concrete composite full strength joints endowed with concrete filled tubes, designed with a multi-objective methodology dealing with seismic actions followed by fire is presented in this paper. In detail, instead of a traditional single-objective design where fire safety and seismic safety are independently achieved and the sequence of seismic and fire loading are not taken into account, the proposed design approach guarantees: (i) both seismic safety and fire safety with regard to accidental actions; (ii) fire safety for at least 15 min fire exposure on a joint characterised by stiffness deterioration and strength degradation due to seismic loading. In order to achieve the multi-objective design, full strength beam-to-composite tubular column joints were designed by means of the component method of Eurocode 4 Part 1-1 and Eurocode 3 Part 1-8, while Eurocode 4 Part 1-2 was considered for fire design. Moreover, to face a seismic-induced fire, they were enhanced with specific joint components which will be detailed. Both the experimental programme and the results provided by seismic tests, pre-damaged tests and fire tests carried out on beam-to-column joints are presented and discussed. The results demonstrate their adequacy in terms of design and performance. Moreover, non-linear numerical simulations clearly show that these joints can be deemed adequate for moment resisting frames of medium ductility class characterised by a behaviour factor of about 4. (C) 2011 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Pucinotti et al. JCSR 2011.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.35 MB
Formato
Adobe PDF
|
4.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.