We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator and a Carath´eodory reaction. We show that it has at least three solutions, two of constant sign and the third nodal. In the particular case of the scalar p−Laplacian and with a parametric reaction of equidiffusive type, we show that three solutions with precise sign exist if the parameter λ >λ_1(p)= the first nonzero eigenvalue ofthe periodic scalar Laplacian. Finally, in the semilinear case (p = 2), weshow that there is a second nodal solution, for a total of four nontrivial solutions all with sign information.

Nonlinear nonhomogeneous periodic problems / Barletta, Giuseppina; D'Aguì, G; Papageorgiou, N S. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 23:2(2016). [10.1007/s00030-016-0356-3]

Nonlinear nonhomogeneous periodic problems

BARLETTA, Giuseppina
;
2016-01-01

Abstract

We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator and a Carath´eodory reaction. We show that it has at least three solutions, two of constant sign and the third nodal. In the particular case of the scalar p−Laplacian and with a parametric reaction of equidiffusive type, we show that three solutions with precise sign exist if the parameter λ >λ_1(p)= the first nonzero eigenvalue ofthe periodic scalar Laplacian. Finally, in the semilinear case (p = 2), weshow that there is a second nodal solution, for a total of four nontrivial solutions all with sign information.
2016
Constant sign solutions; Extremal solutions; Nodal solutions; Nonlinear maximum principle; critical groups
File in questo prodotto:
File Dimensione Formato  
BDP1-7.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 372.48 kB
Formato Adobe PDF
372.48 kB Adobe PDF Visualizza/Apri
art_10.1007_s00030-016-0356-3.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico (Accesso privato/ristretto)
Dimensione 480.39 kB
Formato Adobe PDF
480.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/2004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact