The paper deals with experimental testing and numerical simulation of the mechanical behaviour of multi-layer cylindrical coupons, of two different diameters, made in carbon-epoxy composite. The aim of the study is to provide a simple and effective numerical model that can be used as a design tool for structural elements having analogous geometrical and manufacturing characteristics. The numerical analysis, performed in the elastic regime with a standard finite element (FE) code, was strongly correlated with the laboratory determination of fibre-volume fractions and of some elastic parameters of the material system. Other parameters, like the shear modulus values G, were in fact appropriately chosen to calibrate the numerical FE model which was forced to reproduce the results of the initial specific ring stiffness tests carried out on pole coupons with external diameter equal to 80 turn. The model was, then, validated by comparison between the numerical results and the experimental ones obtained for coupons of 60 mm diameter.
Mechanical testing and numerical modelling of pull-wound carbon-epoxy spinnaker poles / Dispenza, C.; Pisano, Aurora Angela; Fuschi, Paolo. - In: COMPOSITES SCIENCE AND TECHNOLOGY. - ISSN 0266-3538. - 62:(2002), pp. 1161-1170. [10.1016/S0266-3538(02)00044-1]
Mechanical testing and numerical modelling of pull-wound carbon-epoxy spinnaker poles
PISANO, Aurora Angela;FUSCHI, Paolo
2002-01-01
Abstract
The paper deals with experimental testing and numerical simulation of the mechanical behaviour of multi-layer cylindrical coupons, of two different diameters, made in carbon-epoxy composite. The aim of the study is to provide a simple and effective numerical model that can be used as a design tool for structural elements having analogous geometrical and manufacturing characteristics. The numerical analysis, performed in the elastic regime with a standard finite element (FE) code, was strongly correlated with the laboratory determination of fibre-volume fractions and of some elastic parameters of the material system. Other parameters, like the shear modulus values G, were in fact appropriately chosen to calibrate the numerical FE model which was forced to reproduce the results of the initial specific ring stiffness tests carried out on pole coupons with external diameter equal to 80 turn. The model was, then, validated by comparison between the numerical results and the experimental ones obtained for coupons of 60 mm diameter.File | Dimensione | Formato | |
---|---|---|---|
DispenzaFuschiPisano_2002_CST_Mechanical testing_editor.pdf
solo utenti autorizzati
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
426.68 kB
Formato
Adobe PDF
|
426.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.