Alzheimer's disease (AD) impact is rapidly growing in western countries. The unavoidable progression of the disease, call for reliable ways to diagnose the AD in its early stages. Recently, it has been shown that the electroencephalography (EEG) complexity analysis could be used to predict the conversion from mild cognitive impairment (MCI) to AD. Despite the EEG analysis does not achieve yet the required clinical performance in terms of both sensitivity and specificity to be accepted as a clinically reliable technique of screening, the researchers count on the easiness and the non-invasiveness of the EEG measuring system. The aim of this paper is to analyze the efficacy of entropic complexity measures as a possible bio-marker to distinguish among the brain states related to the AD patients and MCI subjects from normal healthy elderly. The research is carried out on an experimental database. Three different emerging measures of complexity are compared, namely, permutation entropy, sample entropy, and Lempel-Ziv complexity. Because time series derived from biological systems show structures on multiple spatial-temporal scales and there exists a significant inter-channel correlation among the EEG channels, a multiscale multivariate approach is also implemented. Limited to the analyzed data, the results show that the severity of the AD reflects in the EEG dynamic complexity leaving the hope of early diagnosis based on simple EEG.
Entropic measures of EEG complexity in alzheimer's disease through a multivariate multiscale approach / Labate, D; La Foresta, F; Morabito, G; Palamara, I; Morabito, F. - In: IEEE SENSORS JOURNAL. - ISSN 1530-437X. - 13:9(2013), pp. 6552994.3284-6552994.3292. [10.1109/JSEN.2013.2271735]
Entropic measures of EEG complexity in alzheimer's disease through a multivariate multiscale approach
La Foresta F;Morabito F
2013-01-01
Abstract
Alzheimer's disease (AD) impact is rapidly growing in western countries. The unavoidable progression of the disease, call for reliable ways to diagnose the AD in its early stages. Recently, it has been shown that the electroencephalography (EEG) complexity analysis could be used to predict the conversion from mild cognitive impairment (MCI) to AD. Despite the EEG analysis does not achieve yet the required clinical performance in terms of both sensitivity and specificity to be accepted as a clinically reliable technique of screening, the researchers count on the easiness and the non-invasiveness of the EEG measuring system. The aim of this paper is to analyze the efficacy of entropic complexity measures as a possible bio-marker to distinguish among the brain states related to the AD patients and MCI subjects from normal healthy elderly. The research is carried out on an experimental database. Three different emerging measures of complexity are compared, namely, permutation entropy, sample entropy, and Lempel-Ziv complexity. Because time series derived from biological systems show structures on multiple spatial-temporal scales and there exists a significant inter-channel correlation among the EEG channels, a multiscale multivariate approach is also implemented. Limited to the analyzed data, the results show that the severity of the AD reflects in the EEG dynamic complexity leaving the hope of early diagnosis based on simple EEG.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.