IEEE 802.11p/WAVE (Wireless Access for Vehicular Environment) is the emerging standard to enable wireless access in the vehicular environment. Most of the research contributions in this area has focused on safety-related applications, while comfort and information/entertainment applications (such as on board Internet access, point-of-interest notification, e-map download) have been considered only recently. Notwithstanding, the user interest in this kind of applications is expected to become a big market driver in a near future. In this paper, an extension to IEEE 802.11p is proposed that is compliant with the multi-channel operation of the WAVE architecture and targets at the support of non-safety applications, while preserving the delivery of safety services. The proposed W-HCF (WAVE-based Hybrid Coordination Function) protocol leverages controlled access capabilities on top of the basic contention-based access of the IEEE 802.11p; it exploits vehicles’ position information and coordination among WAVE providers in order to improve performances of delay-constrained and loss-sensitive non-safety applications.
Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs / Amadeo, M; Campolo, C; Molinaro, Antonella. - In: AD HOC NETWORKS. - ISSN 1570-8705. - 10, Issue 2:March 2012(2012), pp. 253-269. [10.1016/j.adhoc.2010.09.013]
Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs
Amadeo M;Campolo C;MOLINARO, Antonella
2012-01-01
Abstract
IEEE 802.11p/WAVE (Wireless Access for Vehicular Environment) is the emerging standard to enable wireless access in the vehicular environment. Most of the research contributions in this area has focused on safety-related applications, while comfort and information/entertainment applications (such as on board Internet access, point-of-interest notification, e-map download) have been considered only recently. Notwithstanding, the user interest in this kind of applications is expected to become a big market driver in a near future. In this paper, an extension to IEEE 802.11p is proposed that is compliant with the multi-channel operation of the WAVE architecture and targets at the support of non-safety applications, while preserving the delivery of safety services. The proposed W-HCF (WAVE-based Hybrid Coordination Function) protocol leverages controlled access capabilities on top of the basic contention-based access of the IEEE 802.11p; it exploits vehicles’ position information and coordination among WAVE providers in order to improve performances of delay-constrained and loss-sensitive non-safety applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.