We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). By combining variational with degree theoretic techniques, we prove a multiplicity theorem. In the process we also prove a result of independent interest relating $W_n^{1,p}$ and $C_n^1$ local minimizers, of a nonsmooth locally Lipschitz functional.

A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential / Barletta, Giuseppina; N. S., Papageorgiou. - In: JOURNAL OF GLOBAL OPTIMIZATION. - ISSN 0925-5001. - 39:3(2007), pp. 365-392. [10.1007/s10898-007-9142-4]

A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential

BARLETTA, Giuseppina;
2007-01-01

Abstract

We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). By combining variational with degree theoretic techniques, we prove a multiplicity theorem. In the process we also prove a result of independent interest relating $W_n^{1,p}$ and $C_n^1$ local minimizers, of a nonsmooth locally Lipschitz functional.
2007
Neumann problem; p-Laplacian; Degree theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/2917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact