We prove the localH"older continuity of bounded generalized solutions of theDirichlet problem associated to the equation$$ qquadqquaddisplaystyle{sum_{i =1}^{m} rac{partial}{partial x_i} a_i (x, u, abla u)- c_0 |u|^{p-2} u = f(x, u, abla u)},$$assuming that the principal part of the equation satisfies the following degenerate ellipticity condition$$lambda (|u|) sum_{i=1}^m a_i (x,u, eta) eta_i geq u(x)|eta|^p,$$and the lower-order term $f$ has a natural growth with respect $ abla u$.
Titolo: | Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms. |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.12318/2921 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Bonafede_2018_CMUC_Holder continuity-Editor.pdf | versione editoriale | Versione Editoriale (PDF) | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.