We prove the localH"older continuity of bounded generalized solutions of theDirichlet problem associated to the equation$$ qquadqquaddisplaystyle{sum_{i =1}^{m} rac{partial}{partial x_i} a_i (x, u, abla u)- c_0 |u|^{p-2} u = f(x, u, abla u)},$$assuming that the principal part of the equation satisfies the following degenerate ellipticity condition$$lambda (|u|) sum_{i=1}^m a_i (x,u, eta) eta_i geq u(x)|eta|^p,$$and the lower-order term $f$ has a natural growth with respect $ abla u$.
Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms / Bonafede, Salvatore. - In: COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE. - ISSN 0010-2628. - 59:1(2018), pp. 45-64. [10.14712/1213-7243.2015.242]
Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms.
BONAFEDE, Salvatore
2018-01-01
Abstract
We prove the localH"older continuity of bounded generalized solutions of theDirichlet problem associated to the equation$$ qquadqquaddisplaystyle{sum_{i =1}^{m} rac{partial}{partial x_i} a_i (x, u, abla u)- c_0 |u|^{p-2} u = f(x, u, abla u)},$$assuming that the principal part of the equation satisfies the following degenerate ellipticity condition$$lambda (|u|) sum_{i=1}^m a_i (x,u, eta) eta_i geq u(x)|eta|^p,$$and the lower-order term $f$ has a natural growth with respect $ abla u$.File | Dimensione | Formato | |
---|---|---|---|
Bonafede_2018_CMUC_Holder continuity-Editor.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
216.34 kB
Formato
Adobe PDF
|
216.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.