The existence of infinitely many constant-sign solutions for a nonlinear parameter depending Neumann boundary value problem involving a discrete $p$-Laplacian operator is investigated. Our approach is fully based on the critical point theory for functionals defined on a finite dimensional Banach space.

Infinitely many constant-sign solutions for a discrete Neumann problem / Barletta, G; Candito, Pasquale. - In: DYNAMICS OF CONTINUOUS, DISCRETE AND IMPULSIVE SYSTEMS. SERIES A: MATHEMATICAL ANALYSIS. - ISSN 1918-2538. - 22:6(2015), pp. 453-463.

Infinitely many constant-sign solutions for a discrete Neumann problem

Barletta G;Candito Pasquale
2015-01-01

Abstract

The existence of infinitely many constant-sign solutions for a nonlinear parameter depending Neumann boundary value problem involving a discrete $p$-Laplacian operator is investigated. Our approach is fully based on the critical point theory for functionals defined on a finite dimensional Banach space.
2015
Discrete nonlinear Neumann boundary value problems; p-Laplacian; infinitely many solutions; constant-sign solutions; ue problems, $p$-Laplacian, infinitely many solutions, constant-sign solutions,
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/3377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact