We consider a nonlinear Neumann problem driven by the pLaplacianand with a concave parametric reaction term and an asymptotically linear pertur-bation. We prove a multiplicity theorem producing five nontrivial solutions all withsign information when the parameter is small. For the semilinear case (p = 2) weproduce six solutions, but we are unable to determine the sign of the sixth solution.Our approach uses critical point theory, truncation and comparison techniques andMorse theory.
Nonlinear noncoercive Neumann problems with a reaction concave near the origin / Candito, Pasquale; D'Aguì, G; Papageorgiou, N.. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - 47:1(2016), pp. 289-317. [10.12775/TMNA.2016.007]
Nonlinear noncoercive Neumann problems with a reaction concave near the origin
CANDITO, Pasquale
;
2016-01-01
Abstract
We consider a nonlinear Neumann problem driven by the pLaplacianand with a concave parametric reaction term and an asymptotically linear pertur-bation. We prove a multiplicity theorem producing five nontrivial solutions all withsign information when the parameter is small. For the semilinear case (p = 2) weproduce six solutions, but we are unable to determine the sign of the sixth solution.Our approach uses critical point theory, truncation and comparison techniques andMorse theory.File | Dimensione | Formato | |
---|---|---|---|
candito_2016_TMNA-nonlinear_editor.pdf
non disponibili
Descrizione: versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
502.74 kB
Formato
Adobe PDF
|
502.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.