Fallout radionuclides have been used successfully worldwide as tracers for soil erosion, but relatively fewstudies exploit the full potential of plutonium (Pu) isotopes. Hence, this study aims to explore the suitability of the plutoniumisotopes 239Pu and 240Pu as amethod to assess soil erosion magnitude by comparison tomore established fallout radionuclides such as 137Cs and 210Pbex. As test area an erosion affected headwater catchment of the Lake Soyang (South Korea) was selected. All three fallout radionuclides confirmed high erosion rates for agricultural sites (N25 t ha−1 yr−1). Pu isotopes further allowed determining the origin of the fallout. Both 240Pu/239Pu atomic ratios and 239+240Pu/137Cs activity ratios were close to the global fallout ratio. However, the depth profile of the 239+240Pu/137Cs activity ratios in undisturbed sites showed lower ratios in the top soil increments, which might be due to highermigration rates of 239+240Pu. The activity ratios further indicated preferential transport of 137Cs from eroded sites (higher ratio compared to the global fallout) to the depositional sites (smaller ratio). As such the 239+240Pu/137Cs activity ratio offered a newapproach to parameterize a particle size correction factor that can be applied when both 137Cs and 239+240Pu have the same fallout source. Implementing this particle size correction factor in the conversion of 137Cs inventories resulted in comparable estimates of soil loss for 137Cs and 239+240Pu. The comparison among the different fallout radionuclides highlights the suitability of 239+240Pu through less preferential transport compared to 137Cs and the possibility to gain information regarding the origin of the fallout. In conclusion, 239+240Pu is a promising soil erosion tracer, however, since the behaviour i.e. vertical migration in the soil and lateral transport during water erosion was shown to differ from that of 137Cs, there is a clear need for a wider agro-environmental testing.

A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer

PORTO, Paolo
Membro del Collaboration Group
;
2016

Abstract

Fallout radionuclides have been used successfully worldwide as tracers for soil erosion, but relatively fewstudies exploit the full potential of plutonium (Pu) isotopes. Hence, this study aims to explore the suitability of the plutoniumisotopes 239Pu and 240Pu as amethod to assess soil erosion magnitude by comparison tomore established fallout radionuclides such as 137Cs and 210Pbex. As test area an erosion affected headwater catchment of the Lake Soyang (South Korea) was selected. All three fallout radionuclides confirmed high erosion rates for agricultural sites (N25 t ha−1 yr−1). Pu isotopes further allowed determining the origin of the fallout. Both 240Pu/239Pu atomic ratios and 239+240Pu/137Cs activity ratios were close to the global fallout ratio. However, the depth profile of the 239+240Pu/137Cs activity ratios in undisturbed sites showed lower ratios in the top soil increments, which might be due to highermigration rates of 239+240Pu. The activity ratios further indicated preferential transport of 137Cs from eroded sites (higher ratio compared to the global fallout) to the depositional sites (smaller ratio). As such the 239+240Pu/137Cs activity ratio offered a newapproach to parameterize a particle size correction factor that can be applied when both 137Cs and 239+240Pu have the same fallout source. Implementing this particle size correction factor in the conversion of 137Cs inventories resulted in comparable estimates of soil loss for 137Cs and 239+240Pu. The comparison among the different fallout radionuclides highlights the suitability of 239+240Pu through less preferential transport compared to 137Cs and the possibility to gain information regarding the origin of the fallout. In conclusion, 239+240Pu is a promising soil erosion tracer, however, since the behaviour i.e. vertical migration in the soil and lateral transport during water erosion was shown to differ from that of 137Cs, there is a clear need for a wider agro-environmental testing.
Particle size correction factor, 239+240Pu/137Cs activity ratio, Conversion models, MODERN, 210Pbex, South Korea
File in questo prodotto:
File Dimensione Formato  
Meusburger_2016_STOTEN_Amulti_Editor.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/3532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact