Let S = K[ x1,..., xn] be a polynomial ring over a field K and I be anonzero graded ideal of S. Then, for t >> 0, the Betti number ss q( S/ I_t) is a polynomial in t, which is denotedby B_Iq( t). It is proved that B_I q( t) is vanishedorof degree l ( I) - 1 provided I is a monomial ideal generated in a single degree or grade( mR( I)) = codim( mR( I)) where m = ( x1,..., xn) and R( I) is theRees ringof I. One lowe rbound for the leading coefficient of B_Iq( t) is given. When I is a Borel principal monomial ideal, B_I q( t) is calculated explicitly.

On the Betti Polynomials of certain graded ideals / Failla, Gioia; Tang, Z. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - 66:7(2018), pp. 3135-3146. [10.1080/00927872.2017.1404077]

On the Betti Polynomials of certain graded ideals

FAILLA, Gioia;
2018-01-01

Abstract

Let S = K[ x1,..., xn] be a polynomial ring over a field K and I be anonzero graded ideal of S. Then, for t >> 0, the Betti number ss q( S/ I_t) is a polynomial in t, which is denotedby B_Iq( t). It is proved that B_I q( t) is vanishedorof degree l ( I) - 1 provided I is a monomial ideal generated in a single degree or grade( mR( I)) = codim( mR( I)) where m = ( x1,..., xn) and R( I) is theRees ringof I. One lowe rbound for the leading coefficient of B_Iq( t) is given. When I is a Borel principal monomial ideal, B_I q( t) is calculated explicitly.
2018
Betti polinomial, Borel principal ideal, degree
File in questo prodotto:
File Dimensione Formato  
Failla_2018_Communications_Betti_editor.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 415.72 kB
Formato Adobe PDF
415.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/3574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact