In this paper we deal with the Holder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second order discontinuous elliptic systems with nonlinearity q>1 and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Holder continuous in the case of the dimension n=q without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets $\Omega_0 \subset \Omega$, $\Sigma _0 \subset \partial \Omega$ are always empty for n=q. Moreover we show that also for 1<q<2, but q close enough to 2, the solutions are global Holder continuous for n=2.
In questo lavoro studiamo la regolarità fino alla frontiera di soluzioni di un problema di Dirichlet non omogeneo per sistemi ellittici discontinui del secondo ordine con non linearità q>1 e con andamenti naturali. Scopo del lavoro è illustrare che le soluzioni del suddetto problema sono sempre globalmente holderiane nel caso di dimensione n=q senza alcun tipo di condizione di regolarità sui coefficienti. Come conseguenza di questo risultato, gli insiemi singolari $\Omega_0 \subset \Omega$, $\Sigma _0 \subset \partial \Omega$ sono sempre vuoti per n=q. Inoltre dimostriamo che anche per 1<q<2, ma q sufficientemente vicino a 2, le soluzioni sono globalmente holderiane per n=2.
Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity q>1 and with natural growth / Giuffre', Sofia; Idone, G.. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. B. - ISSN 0392-4041. - 8:2(2005), pp. 519-524.
Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity q>1 and with natural growth
GIUFFRE', Sofia;
2005-01-01
Abstract
In this paper we deal with the Holder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second order discontinuous elliptic systems with nonlinearity q>1 and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Holder continuous in the case of the dimension n=q without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets $\Omega_0 \subset \Omega$, $\Sigma _0 \subset \partial \Omega$ are always empty for n=q. Moreover we show that also for 1I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.