We prove an estimate on the $L^2(\Omega)$-norm of the Hessian of a function $u \in W^{2,q}(\Omega)$, satisfying an oblique derivative type condition on the boundary, allowing the oblique axis to be tangential at a finite number of points of $\partial \Omega$. Using this inequality, the solvability in Sobolev spaces $W^{2,q}(\Omega)$, with $q$ closed to $2$, follows for a class of nonlinear differential equations in the plane with quadratic growth.
Titolo: | On an estimate related to the Hessian and application to an oblique derivative problem |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.12318/3720 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.