$C^{1, \mu}$-regularity up to the boundary is proved for solutions of boundary value problems for elliptic equations with discontinuous coefficients in the plane. In particular we deal with Dirichlet boundary condition \begin{equation*} \begin{array}{ll} u= g(x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $g(x) \in W^{2-\frac{1}{r}, r}(\partial \Omega)$, r>2, or with the following normal derivative boundary conditions \begin{equation*} \begin{array}{lclr} \ds \frac{\partial u}{\partial n} = h( x) &\ \rm or &\ \ds \frac{\partial u}{\partial n} + \sigma \;u = h( x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $h(x) \in W^{1-\frac{1}{r}, r}(\partial \Omega)$, r>2, $\sigma >0$ and $n$ is the unit outward normal to the boundary $\partial \Omega$.
Global Hölder regularity for discontinuous elliptic equations in the plane / Giuffre', Sofia. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 132:5(2004), pp. 1333-1344. [10.1090/S0002-9939-03-07348-9]
Global Hölder regularity for discontinuous elliptic equations in the plane
GIUFFRE', Sofia
2004-01-01
Abstract
$C^{1, \mu}$-regularity up to the boundary is proved for solutions of boundary value problems for elliptic equations with discontinuous coefficients in the plane. In particular we deal with Dirichlet boundary condition \begin{equation*} \begin{array}{ll} u= g(x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $g(x) \in W^{2-\frac{1}{r}, r}(\partial \Omega)$, r>2, or with the following normal derivative boundary conditions \begin{equation*} \begin{array}{lclr} \ds \frac{\partial u}{\partial n} = h( x) &\ \rm or &\ \ds \frac{\partial u}{\partial n} + \sigma \;u = h( x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $h(x) \in W^{1-\frac{1}{r}, r}(\partial \Omega)$, r>2, $\sigma >0$ and $n$ is the unit outward normal to the boundary $\partial \Omega$.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.