$C^{1, \mu}$-regularity up to the boundary is proved for solutions of boundary value problems for elliptic equations with discontinuous coefficients in the plane. In particular we deal with Dirichlet boundary condition \begin{equation*} \begin{array}{ll} u= g(x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $g(x) \in W^{2-\frac{1}{r}, r}(\partial \Omega)$, r>2, or with the following normal derivative boundary conditions \begin{equation*} \begin{array}{lclr} \ds \frac{\partial u}{\partial n} = h( x) &\ \rm or &\ \ds \frac{\partial u}{\partial n} + \sigma \;u = h( x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $h(x) \in W^{1-\frac{1}{r}, r}(\partial \Omega)$, r>2, $\sigma >0$ and $n$ is the unit outward normal to the boundary $\partial \Omega$.

Global Hölder regularity for discontinuous elliptic equations in the plane

GIUFFRE', Sofia
2004

Abstract

$C^{1, \mu}$-regularity up to the boundary is proved for solutions of boundary value problems for elliptic equations with discontinuous coefficients in the plane. In particular we deal with Dirichlet boundary condition \begin{equation*} \begin{array}{ll} u= g(x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $g(x) \in W^{2-\frac{1}{r}, r}(\partial \Omega)$, r>2, or with the following normal derivative boundary conditions \begin{equation*} \begin{array}{lclr} \ds \frac{\partial u}{\partial n} = h( x) &\ \rm or &\ \ds \frac{\partial u}{\partial n} + \sigma \;u = h( x) &\ \rm on \: \partial\Omega \end{array} \end{equation*} where $h(x) \in W^{1-\frac{1}{r}, r}(\partial \Omega)$, r>2, $\sigma >0$ and $n$ is the unit outward normal to the boundary $\partial \Omega$.
Regularity up to the boundary; elliptic equations; boundary value problems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12318/3903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact