In a very recent paper, the authors proved the local boundedness of solutions for a class of degenerate nonlinear elliptic higher order equations with right-hand sides f(x) in L1. Now we give some sufficient conditions in order to have analogous results assuming that the data f (x) belongs to Lm, with m close enough to 1 and not sufficient to consider the problem within the usual theory of monotone operators.
In un lavoro recente, gli autori provano la limitatezza locale delle soluzioni di una classe di equazioni ellittiche degeneri di ordine superiore con il dato f(x) in L1. Ora, invece, forniscono condizioni sufficienti per la locale limitatezza supponendo il dato f(x) il Lm, con m prossimo abbastanza ad 1 da non poter applicare i risultati noti riguardo l'usuale teoria degli operatori monotoni.
The local boundedness of solutions for a class of degenerate nonlinear elliptic higher order equations with data close enough to L1 / Bonafede, Salvatore; Nicolosi, F. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - 56, n.12:(2011). [10.1080/17476933.2010.551193]
The local boundedness of solutions for a class of degenerate nonlinear elliptic higher order equations with data close enough to L1
BONAFEDE, Salvatore;
2011-01-01
Abstract
In a very recent paper, the authors proved the local boundedness of solutions for a class of degenerate nonlinear elliptic higher order equations with right-hand sides f(x) in L1. Now we give some sufficient conditions in order to have analogous results assuming that the data f (x) belongs to Lm, with m close enough to 1 and not sufficient to consider the problem within the usual theory of monotone operators.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.