This paper deals with finite element dynamic analysis of prestressed cables with uncertain pretension subjected to deterministic excitations. The theoretical model addressed for cable modeling is a two-dimensional finite-strain beam theory, which allows us to eliminate any restriction on the magnitude of displacements and rotations. The dynamic problem is formulated by referring the motion to the inertial frame, which leads to a simple uncoupled quadratic form for the kinetic energy. The effect of the externally applied stochastic pretension is approximately described by means of an uncertain ‘axial’ component of stress resultant, which is assumed constant along the cable in its dead load configuration. The so-called improved perturbation approach is employed to solve this stochastic problem, obtaining two coupled systems of nonlinear deterministic ordinary differential equations, governing the mean value and deviation of response. An efficient and accurate iterative procedure is proposed to obtain the solution of these equations. In order to investigate the influence of random pretension on structural response, few numerical applications are presented and results are discussed.
Questo lavoro ha per oggetto l’analisi dinamica agli elementi finiti di cavi pretesi con pretensione iniziale incerta, soggetti ad azioni esterne deterministiche. Il modello teorico assunto come riferimento per la modellazione del cavo ´e rappresentato da una teoria della trave in regime di deformazioni finite che consente di rimuovere qualsiasi limitazione sull’ordine di grandezza di spostamenti e rotazioni. Il problema dinamico viene formulato riferendo il moto al sistema di riferimento inerziale al fine di poter esprimere l’energia cinetica della trave mediante una forma quadratica disaccoppiata. L’effetto della pretensione stocastica applicata esternamente `e descritto in maniera approssimata introducendo una componente assiale dello sforzo incerta e costante lungo il cavo. Per la soluzione di questo problema stocastico si fa ricorso al cosiddetto metodo della perturbazione modificata, ottenendo due sistemi accoppiati di equazioni differenziali ordinarie deterministiche non lineari, governanti il valor medio e la deviazione della risposta. Una accurata ed efficiente procedura di soluzione iterativa viene proposta per l’integrazione di queste equazioni. Al fine di esaminare l’influenza della pretensione aleatoria sulla risposta strutturale, vengono presentate alcune applicazioni numeriche e si commentano i risultati.
Dynamic analysis of prestressed cables with uncertain pretension / Sofi, Alba; Borino, G; Muscolino, G. - In: MECCANICA. - ISSN 0025-6455. - 37:1-2(2002), pp. 67-84. [10.1023/A:1019662529513]
Dynamic analysis of prestressed cables with uncertain pretension
SOFI, Alba;
2002-01-01
Abstract
This paper deals with finite element dynamic analysis of prestressed cables with uncertain pretension subjected to deterministic excitations. The theoretical model addressed for cable modeling is a two-dimensional finite-strain beam theory, which allows us to eliminate any restriction on the magnitude of displacements and rotations. The dynamic problem is formulated by referring the motion to the inertial frame, which leads to a simple uncoupled quadratic form for the kinetic energy. The effect of the externally applied stochastic pretension is approximately described by means of an uncertain ‘axial’ component of stress resultant, which is assumed constant along the cable in its dead load configuration. The so-called improved perturbation approach is employed to solve this stochastic problem, obtaining two coupled systems of nonlinear deterministic ordinary differential equations, governing the mean value and deviation of response. An efficient and accurate iterative procedure is proposed to obtain the solution of these equations. In order to investigate the influence of random pretension on structural response, few numerical applications are presented and results are discussed.File | Dimensione | Formato | |
---|---|---|---|
Sofi_2002_Meccanica_Dynamic_editor.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
172.13 kB
Formato
Adobe PDF
|
172.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.