We used a carrot (Daucus carota L. cv. Saint Valery) cell suspension culture as a simplified model system to study the effects of the allelochemical compound coumarin (1,2 benzopyrone) on cell growth and utilisation of exogenous nitrate, ammonium and carbohydrates. Exposure to micromolar levels of coumarin caused severe inhibition of cell growth starting from the second day of culture onwards. At the same time, the presence of 50 μmol/L coumarin caused accumulation of free amino acids and of ammonium in the cultured cells, and stimulated their glutamine synthetase, glutamate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphoenolpyruvate carboxylase activities. Malate dehydrogenase, on the other hand, was inhibited under the same conditions. These effects were interpreted in terms of the stimulation of protein catabolism and/or interference with protein biosynthesis induced by coumarin. This could have led to a series of compensatory changes in the activities of enzymes linking nitrogen and carbon metabolism. Because coumarin seemed to abolish the exponential phase and to accelerate the onset of the stationary phase of cell growth, we hypothesise that such allelochemical compounds may act in nature as an inhibitor of the cell cycle and/or as a senescence-promoting substance.

Coumarin inhibits the growth of carrot (Daucus carota L. CV Saint Valery) cells in suspension culture

ABENAVOLI MR;SORGONA' A;SIDARI M;BADIANI M;
2003-01-01

Abstract

We used a carrot (Daucus carota L. cv. Saint Valery) cell suspension culture as a simplified model system to study the effects of the allelochemical compound coumarin (1,2 benzopyrone) on cell growth and utilisation of exogenous nitrate, ammonium and carbohydrates. Exposure to micromolar levels of coumarin caused severe inhibition of cell growth starting from the second day of culture onwards. At the same time, the presence of 50 μmol/L coumarin caused accumulation of free amino acids and of ammonium in the cultured cells, and stimulated their glutamine synthetase, glutamate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphoenolpyruvate carboxylase activities. Malate dehydrogenase, on the other hand, was inhibited under the same conditions. These effects were interpreted in terms of the stimulation of protein catabolism and/or interference with protein biosynthesis induced by coumarin. This could have led to a series of compensatory changes in the activities of enzymes linking nitrogen and carbon metabolism. Because coumarin seemed to abolish the exponential phase and to accelerate the onset of the stationary phase of cell growth, we hypothesise that such allelochemical compounds may act in nature as an inhibitor of the cell cycle and/or as a senescence-promoting substance.
2003
allelopathy; carrot; coumarin; Daucus carota; growth; nitrogen metabolism
File in questo prodotto:
File Dimensione Formato  
Abenavoli_2003_JPlantPhysiol_Coumarin_editor.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 160.46 kB
Formato Adobe PDF
160.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/4515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 40
social impact