We study many properties of level-dependent Hermite subdivision, focusing on schemes preserving polynomial and exponential data. We specifically consider interpolatory schemes, which give rise to level-dependent multiresolution analyses through a prediction-correction approach. A result on the decay of the associated multiwavelet coefficients, corresponding to a uniformly continuous and differentiable function, is derived. It makes use of the approximation of any such function with a generalized Taylor formula expressed in terms of polynomials and exponentials.
Titolo: | Level-dependent interpolatory Hermite subdivision schemes and wavelets |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.12318/4660 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Cotronei_2019_ConstrApprox_Level_Editor.pdf | Versione Editoriale (PDF) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.